File: Source_spectra.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (566 lines) | stat: -rw-r--r-- 20,167 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/*******************************************************************************
*
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Source_spectra
*
* %Identification
* Written by: Erik Knudsen 
* Date: November 11, 2019
* Origin: Risoe
* Release: McXtrace 1.5
*
* Specialized X-ray source for reading in SPECTRA 10 source definitions
*
* %Description
*
* This is a source component for connecting SPECTRA 10-output files with McXtrace.
* json-style SPECTRA 11 output files are not yet supported.
* 
* SPECTRA is an application software to calculate optical properties of synchrotron 
* radiation (SR) emitted from bending magnets, wigglers (conventional and elliptical) 
* and undulators (conventional, helical, elliptical and figure-8). Calculations 
* of radiation from an arbitrary magnetic field distribution are also available. 
* Parameters on the electron beam and the source can be edited completely on 
* graphical user interfaces (GUIs) and it is possible to show the calculation 
* result graphically. The energy spectrum and radiation power after transmitting 
* various filters and convolution of detector's resolution are also available. 
* See <a href="http://spectrax.org/spectra/">SPECTRA</a>.
*
* If the source is symmetric in x and/or y it is possible to speed up the spectra
* calculations by only including one half-plane or quadrant. The other side/quadrants will then
* be mirrored by McXtrace.
*
* %BUGS
* Absolute intensity of 4D (x,y,x',y') is nor correctly normalized.
*
* %Parameters
* E0:             [keV] Mean energy of X-rays.
* dE:             [keV] Energy spread of X-rays.
* Emin:           [keV] Energy of low end of the Spectra-calculated data.
* Emax:           [keV] Energy of high end of the Spectra-calculated data.
* nE:             [int] Number of steps in the spectra-calculations.
* randomphase:    [0/1] If !=0 the photon phase is chosen randomly.
* nx:             [int] Number of grid points along x in datafiles. If zero this is computed from the files.
* ny:             [int] Number of grid points along y in datafiles. If zero this is computed from the files.
* npx:            [int] Number of grid points along x' in datafiles. If zero this is computed from the files.
* npy:            [int] Number of grid points along y' in datafiles. If zero this is computed from the files.
* phase:          [rad] Value of the photon phase (only used if randomphase==0).
* verbose:        [0/1] If non-zero output more warning messages.
* initial_serial: [int] First serial number of the series of spectra files.
* symmetricx:     [0/1] If nonzero the source is mirrored in the x-axis. This to allow smaller spectra-calculations.
* symmetricy:     [0/1] If nonzero the source is mirrored in the y-axis. This to allow smaller spectra-calculations.
* spectra_stem_x: [str] Filename stem of x-projection of source distribution. -n.xxx will be added where n is a serial number and xxx spectra_suffix.
* spectra_stem_y: [str] Filename stem of y-projection of source distribution. -n.xxx will be added where n is a serial number and xxx spectra_suffix.
* spectra_stem:   [str] Filename stem of x,x',y,y'-source distribution distribution. -n.xxx will be added where n is a serial number and xxx spectra_suffix.
* spectra_suffix: [str] Suffix of spectra output files.
* flag4d:         [0/1] Use either (0) x,y-projections or (1) full 4D x,y,x',y' datafiles.
* noinit:         [0/1] Do no initialize the component. Can be usefiul in conjunction with a deactivating WHEN-clause.
*
* CALCULATED PARAMETERS:
*
* %Link
* Tanaka, J. Synchrotron Rad. (2001). 8, 1221-1228. https://doi.org/10.1107/S090904950101425X
* http://spectrax.org/spectra/
*
* %End
*******************************************************************************/

DEFINE COMPONENT Source_spectra

SETTING PARAMETERS (
    string spectra_stem_x="", string spectra_stem_y="", string spectra_stem="", string spectra_suffix="dsc",
    E0=0, dE=0, Emin,Emax, int nE, int randomphase=1, phase=0,
    int nx=0, int ny=0, int npx=0, int npy=0, int initial_serial=1, int symmetricx=0, int symmetricy=0, int verbose=0,
    int flag4d=0, int noinit=0)

/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */ 

SHARE
%{
  %include "read_table-lib";

  int source_spectra_find_offset(char * fn){
      /*find the first line that starts with [-0-9], i.e. can be considered a number*/
      char line[3][512];
      int linecheck[3],done=0;
      long pos[3]={0,-1,-2};
      double buf[6];
      FILE *fs;

      if( (fs=Open_File(fn,"rb",NULL))==NULL){
        /*Open_File from read_table-lib searches the McXtrace library. Will report error on failure, so just exit.*/
        exit(-1);
      }

      /*read lines and save position 3 lines back, when three consecutive line have 3
        columns we have an offset*/
      line[0][0]='\0';line[1][0]='\0';line[2][0]='\0';
      line[0][511]='\0';line[1][511]='\0';line[2][511]='\0';

      do {
          pos[2]=pos[1];pos[1]=pos[0];pos[0]=ftell(fs);
          strncpy(line[2],line[1],511);
          strncpy(line[1],line[0],511);
          fgets(line[0],512,fs);

          /*check for file overrun*/
          if (feof(fs)){
              fprintf(stderr,"ERROR (Source_spectra): Could not strip header from file %s\n",fn);
              exit(-1);
          }

          int i;
          for (i=0;i<3;i++){
              linecheck[i]=sscanf(line[i],"%lf %lf %lf %lf %lf %lf", buf, buf+1, buf+2, buf+3, buf+4, buf+5);
          }
          if(linecheck[0]==linecheck[1] && linecheck[2]==linecheck[1] && (linecheck[0]==3 || linecheck[0]==5) ){
              done=1;
          }
      } while(!done);
      return pos[2];
  }

  double interpolate_4d_spectra(t_Table data, int *idx,int *N, double *alpha){
    /*interpolate in the 4d spectra data structure at the points idx;idx+1 according
      the normalized coordinates alpha*/
    double first[16],second[8],third[4],fourth[2];
    int i,j,k,l,m;
    double result;
    /*pick the "corner" values to interpolate in*/
    for (m=0;m<16;m++){
      i=idx[0]+ m%2;
      j=idx[1]+ (m/2)%2;
      k=idx[2]+ (m/4)%4;
      l=idx[3]+ (m/8)%2;
      first[m]=Table_Index(data,i+ j*N[0] + k*N[0]*N[1] + l*N[0]*N[1]*N[2],4);
    }
    /*reduce and interpolate the values by successive pairwise weighting, i.e. alpha*p{i,j,k,l} + (1-alpha*p_{i+1,j,k,l} etc.*/
    for (m=0;m<8;m++){
      second[m]=(1-alpha[0])*first[m*2] + alpha[0]*first[m*2+1];
    }
    for (m=0;m<4;m++){
      third[m]=(1-alpha[1])*second[m*2] + alpha[1]*second[m*2+1];
    }
    for (m=0;m<2;m++){
      fourth[m]=(1-alpha[2])*third[m*2] + alpha[2]*third[m*2+1];
    }
    result=(1-alpha[3])*fourth[0] + alpha[3]*fourth[1];
    return result;

  }

%}

DECLARE
%{
  double K;
  double dK;
  double pmul;
  double pint;
  t_Table *xproj;
  t_Table *yproj;
  t_Table *map;
  double *Ix;
  double *Iy;
  double *Imap;
  double xmin;
  double xmax;
  double ymin;
  double ymax;
  double xpmin;
  double xpmax;
  double ypmin;
  double ypmax;
  double xstep;
  double ystep;
  double xpstep;
  double ypstep;
  int brilliance_column;
%}

INITIALIZE
%{
  /*if noinit is set - return early from the init function*/
  if (noinit){
    return(_comp);
  }

  int num,status;
  long offset, orig_offset;
  char fnx[256]="";
  char fny[256]="";

  if(flag4d==0){
    /*flag4d not set - the datafiles are x,x',p and y,y',p projections*/
    brilliance_column=2;
    xproj=calloc(nE,sizeof(t_Table));
    yproj=calloc(nE,sizeof(t_Table));
    Ix=calloc(nE,sizeof(double));
    Iy=calloc(nE,sizeof(double));
    if(xproj==NULL || yproj==NULL || Ix==NULL || Iy==NULL){
      fprintf(stderr,"ERROR (%s): Memory allocation error\n",NAME_CURRENT_COMP);
      exit(-1);
    }
    /*find the offset of the datafiles. Assume to be identical for all of them.*/
    snprintf(fnx,255,"%s-%d.%s",spectra_stem_x,initial_serial,spectra_suffix);
    orig_offset=source_spectra_find_offset(fnx);

    for (num=0;num<nE;num++){
      snprintf(fnx,255,"%s-%d.%s",spectra_stem_x,num+initial_serial,spectra_suffix);
      offset=orig_offset;/*Have to do this every time since Table_Read_Offset overwrites offset*/
      if ( (status=Table_Read_Offset(&(xproj[num]),fnx,0,&offset,0))==-1){
        fprintf(stderr,"ERROR (%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,fnx);
        exit(-1);
      }
      snprintf(fny,255,"%s-%d.%s",spectra_stem_y,num+initial_serial,spectra_suffix);
      offset=orig_offset;/*Have to do this every time since Table_Read_Offset overwrites offset*/
      if ( (status=Table_Read_Offset(&(yproj[num]),fny,0,&offset,0))==-1){
        fprintf(stderr,"ERROR (%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,fny);
        exit(-1);
      }
      Ix[num]=Iy[num]=0;
      /*sum the brilliances to get something to normalize to*/
      int r;
      for (r=0;r<xproj[num].rows;r++){
        Ix[num]+=Table_Index(xproj[num],r,brilliance_column);//xproj.data[r*xproj.columns+ brilliance_column];
      }

      for (r=0;r<yproj[num].rows;r++){
        Iy[num]+=Table_Index(yproj[num],r,brilliance_column);//yproj.data[r*yproj.columns+ brilliance_column];
      }
      if (verbose && Ix[num]!=Iy[num]){
        fprintf(stderr,"WARNING (%s): Integrated intensities do not match up for x and y projections at num %d\n",NAME_CURRENT_COMP,num);
      }
      if (verbose) printf("INFO (%s): Integrated intensity for projections I [%d] = (%g,%g)\n",NAME_CURRENT_COMP,num,Ix[num],Iy[num]);

      if (num==0){
        /*check the data structure for the first two input files*/
        /*if not given deduce the number of sample-points in datafiles*/
        if (nx==0){
          int r;
          double p1,p2;
          for (r=0;r<xproj[0].rows;r++){
            if ( nx==0 && (p1=Table_Index(xproj[0],r,0))>(p2=Table_Index(xproj[0],r+1,0)) ){
              /*this means we have found where the first coordinate starts over*/
              nx=r+1;
              break;
            }
          }
          if (nx==0){
            nx=1;
          }
          npx/=nx;
        }
        if (npx==0){
          npx=xproj[0].rows/nx;
        }

        if( nx*npx != xproj[0].rows){
          fprintf(stderr,"Error (%s): number of read rows (%d) in %s does not match nx*npx = ( %d * %d). Please check the input files. Aborting.\n",NAME_CURRENT_COMP,xproj[0].rows,fnx,nx,npx);
          exit(-1);
        }

        if(ny==0){
          int r;
          for (r=0;r<yproj[0].rows;r++){
            if ( ny==0 && Table_Index(yproj[0],r,0)>Table_Index(yproj[0],r+1,0) ){
              /*this means we have found where the first coordinate starts over*/
              ny=r+1;
              break;
            }
          }
          if (ny==0){
            ny=1;
          }
        }
        if (npy==0){
          npy=yproj[0].rows/ny;
        }
        if( ny*npy != yproj[0].rows){
          fprintf(stderr,"ERROR (%s): number of read rows (%d) in %s does not match ny*npy = ( %d * %d). Please check the input files. Aborting.\n",NAME_CURRENT_COMP,yproj[0].rows,fny,ny,npy);
          exit(-1);
        }
        if(verbose) printf("INFO (%s): (nx,nxp) = ( %d %d ), (ny,npy) = ( %d %d )\n",NAME_CURRENT_COMP,nx,npx,ny,npy);
      }/*if num==0*/
    }
    /*find limits in x,x',y, and y', assuming they're the same across all source files.*/
    /*these would be relevant for a search*/

    t_Table *xptr=&(xproj[0]);
    t_Table *yptr=&(yproj[0]);
    xmin=Table_Index(*xptr,0,0);
    xpmin=Table_Index(*xptr,0,1);
    ymin=Table_Index(*yptr,0,0);
    ypmin=Table_Index(*yptr,0,1);
    xmax=Table_Index(*xptr,nx-1,0);
    xpmax=Table_Index(*xptr,nx*npx-1,1);
    ymax=Table_Index(*yptr,ny-1,0);
    ypmax=Table_Index(*yptr,ny*npy-1,1);
    xstep=Table_Index(*xptr,1,0)-Table_Index(*xptr,0,0);
    xpstep=Table_Index(*xptr,nx,1)-Table_Index(*xptr,0,1);
    ystep=Table_Index(*yptr,1,0)-Table_Index(*yptr,0,0);
    ypstep=Table_Index(*yptr,ny,1)-Table_Index(*yptr,0,1);

    if(verbose && xmin==0 && symmetricx==0){
    fprintf(stderr,"WARNING (%s): Minimum x-value in datafile is 0 but symmetricx is not set.\n",NAME_CURRENT_COMP);
    }
    if(verbose && xmin==0 && symmetricy==0){
      fprintf(stderr,"WARNING (%s): Minimum y-value in datafile is 0 but symmetricy is not set.\n",NAME_CURRENT_COMP);
    }
  } else {
    /*The datafiles are 4D: i.e. x,x',y,y' and p columns;*/
    brilliance_column=4;
    map=calloc(nE,sizeof(t_Table));
    Imap=calloc(nE,sizeof(double));
    sprintf(fnx,"%s-%d.%s",spectra_stem,initial_serial,spectra_suffix);
    orig_offset=source_spectra_find_offset(fnx);
    for (num=0;num<nE;num++){
      sprintf(fnx,"%s-%d.%s",spectra_stem,num+initial_serial,spectra_suffix);
      offset=orig_offset;/*Table_Read_Offset overwrites offset*/
      if ( (status=Table_Read_Offset(&(map[num]),fnx,0,&offset,0))==-1){
        fprintf(stderr,"Source_spectra(%s) Error: Could not parse file \"%s\"\n",NAME_CURRENT_COMP,fnx);
        exit(-1);
      }
      Imap[num]=0;
      /*sum the brilliances to get something to normalize to*/
      int r;
      for (r=0;r<map[num].rows;r++){
        Imap[num]+=Table_Index(map[num],r,brilliance_column);
      }
    }
    /*if the limits are not given, try to deduce the number of steps from the data files*/
    int r;
    double p1,p2;
    for (r=0;r<map[0].rows;r++){
      if ( nx==0 && (p1=Table_Index(map[0],r,0))>(p2=Table_Index(map[0],r+1,0)) ){
        /*this means we have found where the first coordinate starts over*/
        nx=r+1;
      }
      if ( ny==0 && (p1=Table_Index(map[0],r,1))>(p2=Table_Index(map[0],r+1,1)) ){
        /*this means we have found where the 2nd coordinate starts over*/
        ny=(r+1)/nx;
      }
      if ( npx==0 && (p1=Table_Index(map[0],r,2))>(p2=Table_Index(map[0],r+1,2)) ){
        /*this means we have found where the 3rd coordinate starts over*/
        npx=(r+1)/(nx*ny);
      }
      /*if first 3 are set stop searching - set the last later*/
      if(nx && ny && npx ){
        break;
      }
    }
    if (nx==0){
      nx=1;
    }
    if (ny==0){
      ny=1;
    }
    if (npx==0){
      npx=1;
    }
    /*last one is set frm th evalues of the other ones*/
    if (npy==0){
      npy=map[0].rows/(nx*ny*npx);
    }
    if (verbose) printf("INFO (%s): [Nx,Ny,Nx,Ny]= [ %d %d %d %d ] for files: %s-X.%s\n",NAME_CURRENT_COMP,nx,ny,npx,npy,spectra_stem,spectra_suffix);

    /*set limit values. Use that the last row contains the maximum value for all 4 dimensions.*/
    xmin=Table_Index(map[0],0,0);
    xmax=Table_Index(map[0],map[0].rows,0);
    xstep=(xmax-xmin)/nx;
    ymin=Table_Index(map[0],0,1);
    ymax=Table_Index(map[0],map[0].rows,1);
    ystep=(ymax-ymin)/ny;
    xpmin=Table_Index(map[0],0,2);
    xpmax=Table_Index(map[0],map[0].rows,2);
    xpstep=(xpmax-xpmin)/npx;
    ypmin=Table_Index(map[0],0,3);
    ypmax=Table_Index(map[0],map[0].rows,3);
    ypstep=(ypmax-ypmin)/npy;

    if (verbose) printf("INFO (%s): (xmin,xmax)=( %g %g ), (ymin,ymax)=( %g %g ), (xpmin,xpmax)=( %g %g ), (ypmin,ypmax)=( %g %g )\n",NAME_CURRENT_COMP,xmin,xmax,ymin,ymax,xpmin,xpmax,ypmin,ypmax);
  }

  if(E0-dE-Emin <-FLT_MAX || E0+dE-Emax>FLT_MAX){
    fprintf(stderr,"WARNING(%s): Sampled energy interval (%g+-%g keV) reaches outside what\'s defined by datafiles (%g+-%g keV)\n",NAME_CURRENT_COMP,E0,dE,(Emin+Emax)*0.5,(Emax-Emin)*0.5);
  }

  /*downweight accoring to number of rays*/
  pmul=1.0/((double) mcget_ncount());

  /*downweight for not using the full energy window. Don't do this for deterministic energy (dE=0).*/
  if(dE && ( (E0-dE>Emin) || E0+dE<Emax) ){
    pmul*=2*dE/(Emax-Emin);
  }

%}

TRACE
%{
  double kk,theta_x,theta_y,l,e,k,xp,yp;
  int num,ix,ipx,iy,ipy;
  double alpha,beta,Iinterpx,Iinterpy;
  t_Table *xptr,*yptr;
  
  p=pmul;
  theta_x=(xpmin + rand01()*(xpmax-xpmin))*1e-3;
  theta_y=(ypmin + rand01()*(ypmax-ypmin))*1e-3;
  
  x=(xmin+rand01()*(xmax-xmin))*1e-3;
  y=(ymin+rand01()*(ymax-ymin))*1e-3;

  
  /*So now interpolate to get at Brilliance values*/
  /*Need to normalize to something*/
  
  /*pick an energy randomly*/
  e=rand01()*2*dE+(E0-dE);
  if(e<Emin || e>Emax){
    ABSORB;
  }
  k=E2K*e;

  kx=tan(theta_x);
  ky=tan(theta_y);
  kz=1;
  NORM(kx,ky,kz);

  kx*=k;
  ky*=k;
  kz*=k;
  /*compute xp and yp*/
  xp=kx/kz*1e3;/*spectra output is in millirad*/
  yp=ky/kz*1e3;
  double xx=x*1e3;/*spectra output is in mm*/
  double yy=y*1e3;

  ix  = (int)floor((xx - xmin)*(nx-1)/(xmax - xmin));
  ipx = (int)floor((xp- xpmin)*(npx-1)/(xpmax-xpmin));
  iy  = (int)floor((yy - ymin)*(ny-1)/(ymax - ymin));
  ipy = (int)floor((yp- ypmin)*(npy-1)/(ypmax-ypmin));

  int ie;
  double pe[2];
  double ealpha,estep;
  estep=(Emax-Emin)/(nE-1);
  num=(int)floor( (e-Emin)/estep);
  if (num<0) num=0;
  if (num>nE-1) num=nE-1;
  ealpha = (e- (Emin+estep*num))/estep;

  if(!flag4d){
    xptr=&(xproj[num]);
    yptr=&(yproj[num]);
    for (ie=0;ie<2;ie++){
      alpha=( (xx - Table_Index(*xptr,ix,0)) /xstep);/*regular grid so no need to do ix + ipx*nx*/
      beta=( (xp - Table_Index(*xptr,ipx*nx,1)) /xpstep) ;

      double t0,t1;
      t0=(1-alpha)*fabs(Table_Index(*xptr,ix+ipx*nx,2)) + alpha*fabs(Table_Index(*xptr,(ix+1)+ipx*nx,2));
      t1=(1-alpha)*fabs(Table_Index(*xptr,ix+(ipx+1)*nx,2)) + alpha*fabs(Table_Index(*xptr,(ix+1)+(ipx+1)*nx,2));
      Iinterpx = (1-beta)*t0+beta*t1 *xstep*1e-3*xpstep*1e-3;

      alpha=( (yy - Table_Index(*yptr,iy,0)) /ystep);/*regular grid so no need to do iy + ipy*ny*/
      beta=( (yp - Table_Index(*yptr,ipy*ny,1)) /ypstep) ;

      t0=(1-alpha)*fabs(Table_Index(*yptr,iy+ipy*ny,2)) + alpha*fabs(Table_Index(*yptr,(iy+1)+ipy*ny,2));
      t1=(1-alpha)*fabs(Table_Index(*yptr,iy+(ipy+1)*ny,2)) + alpha*fabs(Table_Index(*yptr,(iy+1)+(ipy+1)*ny,2));
      Iinterpy = (1-beta)*t0+beta*t1 * ystep*1e-3*ypstep*1e-3;

      pe[ie]=Iinterpx/Ix[num+ie] * Iinterpy/Iy[num+ie] * (Ix[num+ie]+Iy[num+ie])*0.5;
    }
    /* Set the photon ray weight to the mean of the two multiplied by initial weight
     * due to energy interval and ray count*/

    //p=pmul * Iinterpx/Ix[num] * Iinterpy/Iy[num] * (Ix[num]+Iy[num])*0.5;
    /*now we interpolate in energy*/
    p=pmul * ( (1-ealpha)*pe[0] + ealpha*pe[1]);
  }else{
    /*each pt in x,x',y,y' space is surrounded by 16 points. Interpolate between them*/
    double alx,alxp,aly,alyp;
    alx=( (xx - Table_Index(map[ie],ix,0)) /xstep);
    aly=( (yy - Table_Index(map[ie],iy*nx,1)) /ystep);
    alxp=( (xp - Table_Index(map[ie],ipx*nx*ny,2)) /xpstep);
    alyp=( (yp - Table_Index(map[ie],ipy*nx*ny*npx,3)) /ypstep);

    for (ie=0;ie<2;ie++){
      int idx[]={ix,iy,ipx,ipy};
      double alpha[]={alx,aly,alxp,alyp};
      int NN[]={nx,ny,npx,npy};
      pe[ie]=interpolate_4d_spectra(map[num+ie],idx,NN,alpha)*xstep*ystep*1e-6 *xpstep*ypstep*1e-6;
    }
    /*lastly interpolate over energy*/
    p=pmul * ( (1-ealpha)*pe[0] + ealpha*pe[1]);
  }
  /*if symmetric source possibly reflect x*/
  if (symmetricx){
    if (rand01()<0.5){
      x=-x;
    }
    if (rand01()<0.5){
      kx=-kx;
    }
  }
  if (symmetricy){
    if (rand01()<0.5){
      y=-y;
    }
    if (rand01()<0.5){
      ky=-ky;
    }
  }

  /*spectra output is in brilliance (unit photons/s/mm^2/mrad^2/0.1%BW), so scale to get at raw flux in photons/s */

  /*set polarization and phase to something known*/
  Ex=0;Ey=0;Ez=0;
  if (!randomphase){
    phi=0;
  }else{
    phi=rand01()*M_2_PI;
  }

  /*set polarization vector*/
  Ex=0;Ey=0;Ez=0;

%}

FINALLY
%{
  if(!noinit){
    if(!flag4d){
      free(Ix);
      free(Iy);
      Table_Free(xproj);
      Table_Free(yproj);
      free(yproj);
      free(xproj);
    }else{
      free(Imap);
      Table_Free(map);
      free(map);
    }
  }
%}

MCDISPLAY
%{
  double dist=1;
  multiline(5, xmin, ymin, 0.0,
      xmax, ymin, 0.0,
      xmax, ymax, 0.0,
      xmin, ymax, 0.0,
      ymin, ymin, 0.0);

  dashed_line(0,0,0, tan(xpmax)*dist,0,dist,4);
  dashed_line(0,0,0, tan(xpmin)*dist,0,dist,4);
    
  dashed_line(0,0,0, 0,tan(ypmax)*dist,dist,4);
  dashed_line(0,0,0, 0,tan(ypmin)*dist,dist,4);
%}

END