1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
*
* Component: Undulator
*
* %Identification
* Written by: Erik B. Knudsen
* Date: May, 2013.
* Version: 1.0
* Origin: DTU Physics
*
* Model of an undulator source
*
* %Description
* A undulator source model based on the derivation by K.J. Kim, AIP, conf. proc., 184, 1989. doi:10.1063/1.38046.
*
* SOLEIL_PX2a U24
* Example: Undulator( E0=12.65, dE=1, Ee=2.75, dEe=0.001, Ie=0.5, K=1.788, Nper=80,
* lu=24e-3, sigey=9.3e-6, sigex=215.7e-6, sigepx=29.3e-6, sigepy=4.2e-6,
* dist=29.5, E1st=12.400 )
*
* %Parameters
* Ee: [GeV] Storage ring electron energy [typically a few GeV).
* dEe: [percent] Relative electron energy beam spread (sigma/Ee).
* Ie: [A] Ring current.
* B: [T] Peak magnet field strength. Overrides K.
* Nper: [int] Number of magnetic periods in the undulator.
* lu: [m] Magnetic period length of the undulator aka lambda_u.
* K: [1] Dimensionless deflection undulator parameter. When K >> 1 (ie B*lu is large) you get a wiggler.
* sigex: [m] Electron ring beam size in horizontal plane (rms).
* sigey: [m] Electron ring beam size in vertical plane (rms).
* sigepx: [rad] Electron ring beam horizontal divergence (rms).
* sigepy: [rad] Electron ring beam vertical divergence (rms).
* phase: [rad] Initial phase of radiation.
* randomphase: [0/1] If !=0 phase will be random (I.e. the emitted radiation is completely incoherent).
* focus_xw: [m] Width of target window.
* focus_yh: [m] Height of target window.
* dist: [m] Distance from source plane to target window along the optical axis.
* E0: [keV] Center of emitted energy spectrum.
* dE: [keV] Half-width of emitted energy spectrum.
* E1st: [keV] Energy of the fundmental (1st) undulator harmonic.
* verbose: [0/1] If nonzero, output extra information.
* quick_integ: [0/1] If nonzero, use faster (but less accurate) integration scheme.
* Br: [T] Remanent field (1.35T for Nd2Fe14B) for gap estimate
*
* %End
*****************************************************************/
DEFINE COMPONENT Undulator
SETTING PARAMETERS (E0=0, dE=0, phase=0, randomphase=1, Ee=2.4, dEe=0, Ie=0.4, B=0, K=0,
int Nper=1, lu=16e-3, sigey=0, sigex=0, sigepx=0, sigepy=0, focus_xw=0, focus_yh=0, dist=1, quick_integ=0,
E1st=0, int verbose=0, Br=1.35)
DEPENDENCY " @GSLFLAGS@ "
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
NOACC
SHARE
%{
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_integration.h>
double mxundulator_Bsig_integrand(double x, void *params){
double w_w1 = *((double *) params);
double p = *((double *) params+1);
double q = *((double *) params+2);
double angle_term = *((double *) params+3);/* xi*gamma/K horizontal angle term*/
double f1 = angle_term - cos(x);
double inner= w_w1*x - p*sin(x) + q*sin(2*x);
double f2 = cos(inner);
return f1*f2;
}
double mxundulator_Bpi_integrand(double x, void *params){
double w_w1 = *((double *) params);
double p = *((double *) params+1);
double q = *((double *) params+2);
double angle_term = *((double *) params+3); /*phi*gamma/K vertical angle term*/
double f1 = angle_term;
double inner= w_w1*x - p*sin(x) + q*sin(2*x);
double f2 = cos(inner);
return f1*f2;
}
double mxundulator_S_N(double w_w1, int N){
return pow(sin(N*M_PI*w_w1)/(N*sin(M_PI*w_w1)),2.0);
}
%}
DECLARE
%{
double gamma;
double gamma2;
double igamma;
double s1x;
double s1y; /*beam's size at dist (convolution of sigex/sigey and igamma)*/
double length; /*undulator magnetic length*/
double kc; /*undulator kritical wavenumber*/
double pmul; /*initial photon weight*/
double gap; /* gap estimate */
gsl_function Bsig;
gsl_function Bpi;
gsl_integration_workspace *gsl_int_ws;
/*fine structure*/
double alpha;
/*electron mass*/
double MELE;
//double besselj[nharm],besselh[nharm];
%}
INITIALIZE
%{
/*fine structure constant from CODATA*/
alpha=7.2973525698e-3;
/*electron mass from CODATA in kg*/
MELE=9.10938291e-31;
length=lu*Nper;
if( (!E1st && !K && B<=0) || Ee<=0 || Ie<=0 ){
fprintf(stderr, "Error (%s): E1st, K, B, Ee, and Ie do not have a sane set of values. Found (%g %g %g %g %g). Aborting.\n",NAME_CURRENT_COMP,E1st,K,B,Ee,Ie);
exit(1);
}
/*compute gamma*/
gamma=(Ee*1e9)/(MELE/CELE*M_C*M_C); /*the extra CELE is to convert to eV*/
gamma2=gamma*gamma;
igamma=1.0/gamma;
if(E1st && lu && !K){
/*compute K and B from desired target energy*/
K=2*(4*M_PI*gamma2/(E2K*E1st*lu*1e10) -1);
if (K>0) K=sqrt(K); else K=0;
} else if (!lu && E1st && K) {
lu=4*M_PI*gamma2/(K*K/2+1)/(E2K*E1st*1e10);
}
if(!K && B && lu) {
K=CELE*B*lu/(2*M_PI*MELE*M_C);
} else if (!B && K && lu) {
B=2*M_PI*MELE*M_C*K/CELE/lu;
}
if (!E1st && K && lu) {
E1st=4*M_PI*gamma2/(K*K/2+1)/(E2K*lu*1e10);
}
if (!E0 && E1st) E0=E1st;
if( E1st<=0 || K<=0 || B<=0 || Ee<=0 || Ie<=0 || lu<=0 || E0<=0){
fprintf(stderr, "Error (%s): (E1st, K, B, Ee, Ie, lu, E0) do not have a sane set of values. Found (%g %g %g %g %g %g %g). Aborting.\n",
NAME_CURRENT_COMP,E1st,K,B,Ee,Ie,lu,E0);
exit(1);
}
/* compute gap estimate */
if (Br > B) { // remanent field, rather usual for Nd2Fe14B
double a=0.55*Br +2.835;
double b=-1.95*Br+7.22;
double c=-1.3*Br +2.97;
gap = -log(B/a)*lu/b;
} else gap=3e-3;
if (verbose)
printf("Undulator (%s) K=%g B=%g[T] lu=%g[m] E1st=%g[keV] E0=%g[keV] gap=%g[m]\n",
NAME_CURRENT_COMP, K,B,lu,E1st,E0,gap);
if (sigex <0 || sigey<0){
fprintf(stderr, "Error (%s): sigex (= %g) and sigey (= %g) must both be >= 0. Negative beam size isn't meaningful. Aborting.\n",NAME_CURRENT_COMP,sigex,sigey);
exit(1);
}
if (dist<=0 || focus_xw < 0 || focus_yh < 0){
fprintf(stderr,"Error (%s): Target undefined. Set dist, focus_xw and focus_yh.\n",NAME_CURRENT_COMP);
exit(1);
}
//printf("Undulator (%s): gamma=%g, divergence is 1/gamma=%g rad.\n",NAME_CURRENT_COMP,gamma,igamma);
/*compute characteristic energy in keV*/
double Ec=0.665*Ee*Ee*B;
//double Ec=1.5*gamma2*HBAR*CELE*B/MELE *1e-3; /*check units on this one. The 1e-3 factor is because energy is assumed to be in keV*/
/*We normally do computations in k so use that for transfer*/
kc=E2K*Ec;
/*allocate an integration workspace*/
if(!quick_integ){
gsl_int_ws = gsl_integration_workspace_alloc (1000);
}
Bsig.function= &mxundulator_Bsig_integrand;
Bpi.function = &mxundulator_Bpi_integrand;
gsl_set_error_handler_off();
/*correct for number of rays*/
pmul=1.0/( (double) mcget_ncount());
/*correct for finite energy interval*/
if(dE){
pmul*=dE*2.0;
}
%}
TRACE
%{
double k,e,l,w_u,r,w;
double xo,yo,zo,xi,psi,theta2,Omega;
double bsigma_integral, bpi_integral, s_n2;
double bsigma_error, bpi_error;
/* pick an energy in the given interval */
e=E0+randpm1()*dE;
/* add electron beam energy spread to gamma parameters (if necessary).*/
if( dEe){
double deltaEe=(randnorm()*dEe*Ee)+ Ee;
gamma=(deltaEe*1e9)/(MELE/CELE*M_C*M_C);/*the extra CELE is to convert to eV*/
gamma2=gamma*gamma;
igamma=1.0/gamma;
}
/* the undulator's fundamental angular frequency*/
w_u=2*M_PI*M_C/lu;
/* now pick angles (\xi and \psi => \theta) within the focus_window
* (point on window + point in electron beam)
* ... we can now weight properly according to ang. flux density*/
if(focus_xw && focus_yh){
randvec_target_rect(&xo,&yo,&zo, &Omega, 0,0,dist, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
}else if (focus_yh!=0){
xi=0;xo=0;yo=0;
yo=randpm1()*0.5*focus_yh;
Omega=1;
}else if (focus_xw!=0){
psi=0;xo=0;yo=0;
xo=randpm1()*0.5*focus_xw;
Omega=1;
}else{
xi=0;psi=0;xo=0;yo=0;
Omega=1;
}
p=pmul*Omega/(4*M_PI);
/*add emittance effects - note that doing it this way will shoot some rays outside the focus-window*/
x=y=z=0;
if(sigex){
x=randnorm()*sigex;
}
if(sigey){
y=randnorm()*sigey;
}
xi=fabs(atan2(xo,dist));
psi=fabs(atan2(yo,dist));
/* This has to be after (xi,psi), else it will be convoluted into the weight calculation.*/
if(sigepx){
xo+=randnorm()*sigepx*dist;
}
if(sigepy){
yo+=randnorm()*sigepy*dist;
}
theta2=xi*xi+psi*psi;
k=E2K*e;
/*angular frequency w:*/
w=M_C*k*1e10;
kx=xo;ky=yo;kz=dist;
NORM(kx,ky,kz);
kx*=k;
ky*=k;
kz*=k;
double w1theta=2*gamma2/(1+K*K/2.0 + gamma2 *theta2) * w_u;
double w10=2*gamma2/(1+K*K/2.0) * w_u;
double w_w1=w/w1theta;
double w_w10=w/w10;
double Bsig_integ_prms[4],Bpi_integ_prms[4];
Bsig_integ_prms[0] = Bpi_integ_prms[0]=w_w1; /*relative frequency*/
Bsig_integ_prms[1] = Bpi_integ_prms[1] = 2*w_w10*xi*gamma*K/(1+K*K/2.0); /*p*/
Bsig_integ_prms[2] = Bpi_integ_prms[2] = 0.25 * w_w10*K*K/(1+K*K/2.0); /*q*/
Bsig_integ_prms[3] = xi *gamma/K; /*angle terms*/
Bpi_integ_prms[3] = psi*gamma/K;
/*pass the parameters to the integrand*/
Bsig.params=Bsig_integ_prms;
Bpi.params =Bpi_integ_prms;
if (!quick_integ){
gsl_integration_qags (&(Bsig), 0, M_PI, 0, 1e-6, 1000, gsl_int_ws, &bsigma_integral, &bsigma_error);
gsl_integration_qags (&(Bpi), 0, M_PI, 0, 1e-6, 1000, gsl_int_ws, &bpi_integral, &bpi_error);
}else{
size_t neval;
gsl_integration_qng (&(Bsig), 0, M_PI, 0, 1e-6, &bsigma_integral, &bsigma_error,&neval);
gsl_integration_qng (&(Bpi), 0, M_PI, 0, 1e-6, &bpi_integral, &bpi_error,&neval);
}
bsigma_integral*=M_2_PI;/*correct for only integrating half interval and normalize by pi.*/
bpi_integral*=M_2_PI;
s_n2=mxundulator_S_N(w_w1, Nper);
double prefactor=alpha*Ie/CELE*pow(K*gamma/(1+K*K/2.0),2.0)*Nper*Nper*w_w10*w_w10;
p*=prefactor* ( pow(bsigma_integral,2.0)+pow(bpi_integral,2.0) ) *s_n2;
/*randomly pick phase*/
if (randomphase){
phi=rand01()*2*M_PI;
}else{
phi=phase;
}
/*Set polarization vector. TODO: Do this right.*/
Ex=0;Ey=0;Ez=0;
%}
FINALLY
%{
if(!quick_integ){
gsl_integration_workspace_free (gsl_int_ws);
}
%}
MCDISPLAY
%{
double zz,dz;
const double xwidth=1e-2;
const double D=dist;
double x0,z0,x1,z1;
zz=-(length+lu)/2.0;
dz=lu/2.0;
while (zz<=(length-lu)/2.0){
box(0.0,gap/2.0+5e-4,zz,xwidth,1e-3,lu/2.0,0, 0, 1, 0);
box(0.0,-gap/2.0-5e-4,zz,xwidth,1e-3,lu/2.0,0, 0, 1, 0);
zz+=dz;
}
line(0.0,0.0,0.0, K*D*sin(igamma), 0.0, D);
line(0.0,0.0,0.0,-K*D*sin(igamma), 0.0, D);
line(0.0,0.0,0.0, 0.0, D*sin(igamma), D);
line(0.0,0.0,0.0, 0.0,-D*sin(igamma), D);
double phi,dphi;
phi =-igamma;
dphi= 2.0*igamma/32;
while(phi<igamma){
x0=D*sin(phi);
x1=D*sin(phi+dphi);
z0=D*cos(phi);
z1=D*cos(phi+dphi);
line(K*x0,0.0,z0,K*x1,0.0,z1);
line(0.0,x0,z0,0.0,x1,z1);
phi+=dphi;
}
%}
END
|