File: Undulator.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (375 lines) | stat: -rw-r--r-- 11,420 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/************************************************************************
*
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
*
* Component: Undulator
*
* %Identification
* Written by: Erik B. Knudsen
* Date: May, 2013.
* Version: 1.0
* Origin: DTU Physics
*
* Model of an undulator source
*
* %Description
* A undulator source model based on the derivation by K.J. Kim, AIP, conf. proc., 184, 1989. doi:10.1063/1.38046.
*
* SOLEIL_PX2a U24
* Example: Undulator( E0=12.65, dE=1, Ee=2.75, dEe=0.001, Ie=0.5, K=1.788, Nper=80, 
*   lu=24e-3, sigey=9.3e-6, sigex=215.7e-6, sigepx=29.3e-6, sigepy=4.2e-6, 
*   dist=29.5, E1st=12.400 )
*
* %Parameters
* Ee:       [GeV] Storage ring electron energy [typically a few GeV).
* dEe:      [percent] Relative electron energy beam spread (sigma/Ee).
* Ie:       [A]   Ring current.
* B:        [T]   Peak magnet field strength. Overrides K.
* Nper:     [int] Number of magnetic periods in the undulator.
* lu:       [m]   Magnetic period length of the undulator aka lambda_u.
* K:        [1]   Dimensionless deflection undulator parameter. When K >> 1 (ie B*lu is large) you get a wiggler.
* sigex:    [m]   Electron ring beam size in horizontal plane (rms).
* sigey:    [m]   Electron ring beam size in vertical plane (rms).
* sigepx:   [rad] Electron ring beam horizontal divergence (rms).
* sigepy:   [rad] Electron ring beam vertical divergence (rms).
* phase:    [rad] Initial phase of radiation.
* randomphase: [0/1] If !=0 phase will be random (I.e. the emitted radiation is completely incoherent).
* focus_xw: [m]   Width of target window.
* focus_yh: [m]   Height of target window.
* dist:     [m]   Distance from source plane to target window along the optical axis.
* E0:       [keV] Center of emitted energy spectrum.
* dE:       [keV] Half-width of emitted energy spectrum.
* E1st:     [keV] Energy of the fundmental (1st) undulator harmonic.
* verbose:  [0/1] If nonzero, output extra information.
* quick_integ: [0/1] If nonzero, use faster (but less accurate) integration scheme.
* Br:       [T] Remanent field (1.35T for Nd2Fe14B) for gap estimate
*
* %End
*****************************************************************/

DEFINE COMPONENT Undulator

SETTING PARAMETERS (E0=0, dE=0, phase=0, randomphase=1, Ee=2.4, dEe=0, Ie=0.4, B=0, K=0,
        int Nper=1, lu=16e-3, sigey=0, sigex=0, sigepx=0, sigepy=0, focus_xw=0, focus_yh=0, dist=1, quick_integ=0,
        E1st=0, int verbose=0, Br=1.35)

DEPENDENCY " @GSLFLAGS@ "
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */ 
NOACC

SHARE
%{

#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_integration.h>

double mxundulator_Bsig_integrand(double x, void *params){
    double w_w1 = *((double *) params);
    double p = *((double *) params+1);
    double q = *((double *) params+2);
    double angle_term = *((double *) params+3);/* xi*gamma/K  horizontal angle term*/

    double f1 = angle_term - cos(x);
    double inner= w_w1*x - p*sin(x) + q*sin(2*x);
    double f2 =  cos(inner);

    return f1*f2;
}

double mxundulator_Bpi_integrand(double x, void *params){
    double w_w1 = *((double *) params);
    double p = *((double *) params+1);
    double q = *((double *) params+2);
    double angle_term = *((double *) params+3); /*phi*gamma/K vertical angle term*/

    double f1 = angle_term;
    double inner= w_w1*x - p*sin(x) + q*sin(2*x);
    double f2 =  cos(inner);

    return f1*f2;
}

double mxundulator_S_N(double w_w1, int N){
    return pow(sin(N*M_PI*w_w1)/(N*sin(M_PI*w_w1)),2.0);
}


%}

DECLARE
%{
  double gamma;
  double gamma2;
  double igamma;
  double s1x;
  double s1y; /*beam's size at dist (convolution of sigex/sigey and igamma)*/
  double length; /*undulator magnetic length*/
  double kc; /*undulator kritical wavenumber*/
  double pmul; /*initial photon weight*/
  double gap;     /* gap estimate */
  gsl_function Bsig;
  gsl_function Bpi;
  gsl_integration_workspace *gsl_int_ws;

  /*fine structure*/
  double alpha;
  /*electron mass*/
  double MELE;
  //double besselj[nharm],besselh[nharm];
%}


INITIALIZE
%{
  /*fine structure constant from CODATA*/
  alpha=7.2973525698e-3;
  /*electron mass from CODATA in kg*/
  MELE=9.10938291e-31;
  
  length=lu*Nper;

  if( (!E1st && !K && B<=0) || Ee<=0 || Ie<=0 ){
    fprintf(stderr, "Error (%s): E1st, K, B, Ee, and Ie do not have a sane set of values. Found (%g %g %g %g %g). Aborting.\n",NAME_CURRENT_COMP,E1st,K,B,Ee,Ie);
    exit(1);
  }

  /*compute gamma*/
  gamma=(Ee*1e9)/(MELE/CELE*M_C*M_C); /*the extra CELE is to convert to eV*/
  gamma2=gamma*gamma;
  igamma=1.0/gamma;

  
  if(E1st && lu && !K){
      /*compute K and B from desired target energy*/
      K=2*(4*M_PI*gamma2/(E2K*E1st*lu*1e10) -1);
      if (K>0) K=sqrt(K); else K=0;
  } else if (!lu && E1st && K) {
      lu=4*M_PI*gamma2/(K*K/2+1)/(E2K*E1st*1e10);
  }
  if(!K && B && lu) {
    K=CELE*B*lu/(2*M_PI*MELE*M_C);
  } else if (!B && K && lu) {
    B=2*M_PI*MELE*M_C*K/CELE/lu;
  }
  if (!E1st && K && lu) {
      E1st=4*M_PI*gamma2/(K*K/2+1)/(E2K*lu*1e10);
  }
  if (!E0 && E1st) E0=E1st;
  
  if( E1st<=0 || K<=0 || B<=0 || Ee<=0 || Ie<=0 || lu<=0 || E0<=0){
    fprintf(stderr, "Error (%s): (E1st, K, B, Ee, Ie, lu, E0) do not have a sane set of values. Found (%g %g %g %g %g %g %g). Aborting.\n",
    NAME_CURRENT_COMP,E1st,K,B,Ee,Ie,lu,E0);
    exit(1);
  }
  
  /* compute gap estimate */
  if (Br > B) { // remanent field, rather usual for Nd2Fe14B
    double a=0.55*Br +2.835;
    double b=-1.95*Br+7.22;
    double c=-1.3*Br +2.97;
    gap = -log(B/a)*lu/b;
  } else gap=3e-3;
  
  if (verbose) 
    printf("Undulator (%s) K=%g B=%g[T] lu=%g[m] E1st=%g[keV] E0=%g[keV] gap=%g[m]\n",
      NAME_CURRENT_COMP, K,B,lu,E1st,E0,gap);

  if (sigex <0 || sigey<0){
   fprintf(stderr, "Error (%s): sigex (= %g) and sigey (= %g) must both be >= 0. Negative beam size isn't meaningful. Aborting.\n",NAME_CURRENT_COMP,sigex,sigey);
    exit(1);
  }
  if (dist<=0 || focus_xw < 0 || focus_yh < 0){
    fprintf(stderr,"Error (%s): Target undefined. Set dist, focus_xw and focus_yh.\n",NAME_CURRENT_COMP);
    exit(1);
  }


  //printf("Undulator (%s): gamma=%g, divergence is 1/gamma=%g rad.\n",NAME_CURRENT_COMP,gamma,igamma);
  /*compute characteristic energy in keV*/
  double Ec=0.665*Ee*Ee*B;
  //double Ec=1.5*gamma2*HBAR*CELE*B/MELE *1e-3; /*check units on this one. The 1e-3 factor is because energy is assumed to be in keV*/
  /*We normally do computations in k so use that for transfer*/
  kc=E2K*Ec;

  /*allocate an integration workspace*/
  if(!quick_integ){
      gsl_int_ws = gsl_integration_workspace_alloc (1000);
  }
  Bsig.function= &mxundulator_Bsig_integrand;
  Bpi.function = &mxundulator_Bpi_integrand;
  gsl_set_error_handler_off();

  /*correct for number of rays*/
  pmul=1.0/( (double) mcget_ncount());

  /*correct for finite energy interval*/
  if(dE){
      pmul*=dE*2.0;
  }

%}


TRACE
%{

    double k,e,l,w_u,r,w;
    double xo,yo,zo,xi,psi,theta2,Omega;
    double bsigma_integral, bpi_integral, s_n2;
    double bsigma_error, bpi_error;

    /* pick an energy in the given interval */
    e=E0+randpm1()*dE;

    /* add electron beam energy spread to gamma parameters (if necessary).*/
    if( dEe){
        double deltaEe=(randnorm()*dEe*Ee)+ Ee;
        gamma=(deltaEe*1e9)/(MELE/CELE*M_C*M_C);/*the extra CELE is to convert to eV*/
        gamma2=gamma*gamma;
        igamma=1.0/gamma;
    }

    /* the undulator's fundamental angular frequency*/
    w_u=2*M_PI*M_C/lu;

    /* now pick angles (\xi and \psi => \theta) within the focus_window 
     * (point on window + point in electron beam)
     * ... we can now weight properly according to ang. flux density*/
    if(focus_xw && focus_yh){
        randvec_target_rect(&xo,&yo,&zo, &Omega, 0,0,dist, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    }else if (focus_yh!=0){
        xi=0;xo=0;yo=0;
        yo=randpm1()*0.5*focus_yh;
        Omega=1;
    }else if (focus_xw!=0){
        psi=0;xo=0;yo=0;
        xo=randpm1()*0.5*focus_xw;
        Omega=1;
    }else{
        xi=0;psi=0;xo=0;yo=0;
        Omega=1;
    }
    p=pmul*Omega/(4*M_PI);

    /*add emittance effects - note that doing it this way will shoot some rays outside the focus-window*/
    x=y=z=0;
    if(sigex){
        x=randnorm()*sigex;
    }
    if(sigey){
        y=randnorm()*sigey;
    }

    xi=fabs(atan2(xo,dist));
    psi=fabs(atan2(yo,dist));
    /* This has to be after (xi,psi), else it will be convoluted into the weight calculation.*/
    if(sigepx){
        xo+=randnorm()*sigepx*dist;
    }
    if(sigepy){
        yo+=randnorm()*sigepy*dist;
    }

    theta2=xi*xi+psi*psi;

    k=E2K*e;
    /*angular frequency w:*/
    w=M_C*k*1e10;

    kx=xo;ky=yo;kz=dist;
    NORM(kx,ky,kz);
    kx*=k;
    ky*=k;
    kz*=k;


    double w1theta=2*gamma2/(1+K*K/2.0 + gamma2 *theta2) * w_u;
    double w10=2*gamma2/(1+K*K/2.0) * w_u;
    double w_w1=w/w1theta;
    double w_w10=w/w10;

    double Bsig_integ_prms[4],Bpi_integ_prms[4];
    Bsig_integ_prms[0] = Bpi_integ_prms[0]=w_w1; /*relative frequency*/
    Bsig_integ_prms[1] = Bpi_integ_prms[1] = 2*w_w10*xi*gamma*K/(1+K*K/2.0); /*p*/
    Bsig_integ_prms[2] = Bpi_integ_prms[2] = 0.25 * w_w10*K*K/(1+K*K/2.0); /*q*/
    Bsig_integ_prms[3] = xi *gamma/K; /*angle terms*/
    Bpi_integ_prms[3]  = psi*gamma/K;

    /*pass the parameters to the integrand*/
    Bsig.params=Bsig_integ_prms;
    Bpi.params =Bpi_integ_prms;
    if (!quick_integ){
        gsl_integration_qags (&(Bsig),    0, M_PI,    0, 1e-6, 1000, gsl_int_ws, &bsigma_integral, &bsigma_error);
        gsl_integration_qags (&(Bpi),     0, M_PI,    0, 1e-6, 1000, gsl_int_ws, &bpi_integral, &bpi_error);
    }else{
        size_t neval;
        gsl_integration_qng (&(Bsig),    0, M_PI,    0, 1e-6, &bsigma_integral, &bsigma_error,&neval);
        gsl_integration_qng (&(Bpi),     0, M_PI,    0, 1e-6, &bpi_integral, &bpi_error,&neval);
    }
    bsigma_integral*=M_2_PI;/*correct for only integrating half interval and normalize by pi.*/
    bpi_integral*=M_2_PI;

    s_n2=mxundulator_S_N(w_w1, Nper);
    
    double prefactor=alpha*Ie/CELE*pow(K*gamma/(1+K*K/2.0),2.0)*Nper*Nper*w_w10*w_w10;

    p*=prefactor* ( pow(bsigma_integral,2.0)+pow(bpi_integral,2.0) ) *s_n2;

    /*randomly pick phase*/
    if (randomphase){
        phi=rand01()*2*M_PI;
    }else{
        phi=phase;
    }

    /*Set polarization vector. TODO: Do this right.*/
    Ex=0;Ey=0;Ez=0;
%}
FINALLY
%{
    if(!quick_integ){
        gsl_integration_workspace_free (gsl_int_ws);
    }
%}
MCDISPLAY
%{
  
  double zz,dz;
  const double xwidth=1e-2;
  const double D=dist;
  double x0,z0,x1,z1;

  zz=-(length+lu)/2.0;
  dz=lu/2.0;

  while (zz<=(length-lu)/2.0){
    box(0.0,gap/2.0+5e-4,zz,xwidth,1e-3,lu/2.0,0, 0, 1, 0);
    box(0.0,-gap/2.0-5e-4,zz,xwidth,1e-3,lu/2.0,0, 0, 1, 0);
    zz+=dz;
  }

  line(0.0,0.0,0.0, K*D*sin(igamma), 0.0, D);
  line(0.0,0.0,0.0,-K*D*sin(igamma), 0.0, D);
  line(0.0,0.0,0.0, 0.0, D*sin(igamma), D);
  line(0.0,0.0,0.0, 0.0,-D*sin(igamma), D);
  
  double phi,dphi;  
  phi =-igamma;
  dphi= 2.0*igamma/32;
  while(phi<igamma){
    x0=D*sin(phi);
    x1=D*sin(phi+dphi);
    z0=D*cos(phi);
    z1=D*cos(phi+dphi);
    line(K*x0,0.0,z0,K*x1,0.0,z1);
    line(0.0,x0,z0,0.0,x1,z1);
    phi+=dphi;
  }
%}

END