1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/************************************************************************
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
*
* Component: Wiggler
*
* %Identification
* Written by: Erik B. Knudsen
* Date: May, 2013.
* Version: 1.0
* Origin: DTU Physics
*
* Model of a wiggler source
*
* %Description
* A source model based on the derivation from B.D. Patterson, Am. J. Phys. 79, 1046 (2011); doi: 10.1119/1.3614033
*
* Example: Wiggler(
* E0 = 14, dE = 12,
* Ee = 2.75, Ie = 0.5, B = 2.1, K=10, Nper=41, sigey=9.3e-6, sigex=215.7e-6)
*
* %Parameters
* Input Parameters:
* Ee: [GeV] Storage ring electron energy (typically a few GeV)
* Ie: [A] Ring current
* B: TT] Peak magnet field strength
* Nper: [int] Number of magnetic periods in the wiggler
* length: [m] Length of the Wiggler.
* K: [1] Dimensionless undulator parameter, e.g. K >> 1. overrides B.
* gap: [m] Wiggler gap.
* sigex: [m] Electron ring beam size in horizontal plane (rms)
* sigey: [m] Electron ring beam size in vertical plane (rms)
* phase: [rad] Initial phase of radiation.
* randomphase: [0/1] If !=0 phase will be random (I.e. the emitted radiation is completely incoherent)
* focus_xw: [m] Width of target window
* focus_yh: [m] Height of target window
* dist: [m] Distance from source plane to target window along the optical axis
* gauss_t: [0/1] If 0 the target window will be sampled uniformly and the weight adjusted accordingly, otherwise we will use a gaussian sampling scheme.
* E0: [keV] Center of emitted energy spectrum (overrides lambda0)
* dE: [keV] Half-width of emitted energy spectrum
* lambda0: [AA] Center of emitted wavelength spectrum
* dlambda: [AA] Half-width of emitted wavelength spectrum
* verbose: [0/1] If nonzero, output extra information
* %End
***************************************************************************/
DEFINE COMPONENT Wiggler
SETTING PARAMETERS (E0=0, dE=0, lambda0=0,dlambda=0, phase=0, randomphase=1, Ee=2.4, Ie=0.4, B=1.6, K=3,
int Nper=1, length=1, sigey=0, sigex=0, focus_xw=0, focus_yh=0, dist=1, gauss_t=0, int verbose=0, Br=1.35)
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
#ifndef MCCODE_BESSELKNU
#define MCCODE_BESSELKNU 1
#pragma acc routine seq
double besselKnu(double nu, double x){
const double h=0.5;
double KK=0,dK;
int r=0;
const int maxiter=1000;
KK=exp(-x)/2.0;
dK=1;
while (dK>DBL_EPSILON && r<maxiter){
r++;
dK=exp(-x*cosh(r*h))*cosh(nu*r*h);
KK+=dK;
}
#ifndef OPENACC
if (r>=maxiter) {
fprintf(stderr,"Warning: Maximum number of iterations exceeded in besselKnu(%g,%g).\n",nu,x);
}
#endif
KK*=h;
return KK;
}
#endif /*MCCODE_BESSELKNU*/
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440
#endif
%}
DECLARE
%{
double gamma;
double gamma2;
double igamma;
double kc; /*characteristic wavenumber of radiation from bending magnet*/
double s1x;
double s1y; /*beam's size at dist (convolution of sigex/sigey and igamma)*/
double lu; /*wiggler magnetic period*/
double gap;
double p0;
%}
INITIALIZE
%{
// fprintf(stderr,"Warning (%s): Wiggler is an experimental component - testing is ongoing\n",NAME_CURRENT_COMP);
lu=length/Nper;
if( K<=0 || B<=0 || Ee<=0 || Ie<=0 || E0<=0 || length<=0 || Nper <=0){
fprintf(stderr, "Wiggler Error (%s): (K, B, Ee, Ie, E0, length, Nper) do not have a sane set of values. Found (%g %g %g %g %g). Aborting.\n",
NAME_CURRENT_COMP,K,B,Ee,Ie,E0);
exit(1);
}
if(K){
B=2*M_PI*MELECTRON*M_C*K/CELE/lu;
}else if (B>0){
K=CELE*B*lu/(2*M_PI*MELECTRON*M_C);
}
if (sigex <0 || sigey<0){
fprintf(stderr, "Error (%s): sigex and sigey must be > 0. Negative beam size isn't meaningful. Aborting.\n",NAME_CURRENT_COMP);
exit(1);
}
if (dist<=0){
fprintf(stderr,"Error (%s): Target undefined.\n",NAME_CURRENT_COMP);
exit(1);
}
/*compute gamma*/
gamma=(Ee*1e9)/(MELECTRON/CELE*M_C*M_C);/*the extra CELE is to convert to eV*/
gamma2=gamma*gamma;
igamma=1.0/gamma;
//printf("Wiggler (%s): gamma=%g, divergence is 1/gamma=%g rad.\n",NAME_CURRENT_COMP,gamma,igamma);
/*compute characteristic energy in keV*/
double Ec=0.665*Ee*Ee*B;
//double Ec=1.5*gamma2*HBAR*CELE*B/MELE *1e-3; /*check units on this one. The 1e-3 factor is because energy is assumed to be in keV*/
/*We normally do computations in k so use that for transfer*/
kc=E2K*Ec;
/* compute gap estimate */
if (Br > B) {
double a=0.55*Br +2.835;
double b=-1.95*Br+7.22;
double c=-1.3*Br +2.97;
gap = -log(B/a)*lu/b;
} else gap = 3e-3;
if (verbose)
printf("Wiggler (%s): K=%g B=%g[T] lambda_u=%g[m] E0=%g[keV]\n",
NAME_CURRENT_COMP, K,B,lu,E0);
p0 = 1.0/mcget_ncount();
%}
TRACE
%{
double xx,yy,x1,y1,z1;
double k,e,l;
double F1=1.0;
double dx,dy,dz;
// initial source area
xx=randnorm();
yy=randnorm();
x=xx*sigex;
y=yy*sigey;
z=(rand01()-0.5)*length;
// Gaussian distribution at origin
p=p0;/*initial weight is p0*/
if (E0){
if(!dE){
e=E0;
}else {
e=randpm1()*dE + E0;
}
k=E2K*e;
}else if (lambda0){
if (!dlambda){
l=lambda0;
}else{
l=randpm1()*dlambda + lambda0;
}
k=(2*M_PI/l);
}
// targeted area calculation
s1x=sqrt(sigex*sigex + K*igamma*K*igamma*(dist-z)*(dist-z));
s1y=sqrt(sigey*sigey + igamma*igamma*(dist-z)*(dist-z));
if (focus_xw){
if (!gauss_t){
/*sample uniformly but adjust weight*/
x1=randpm1()*focus_xw/2.0;
p*=exp(-(x1*x1)/(2.0*s1x*s1x));
}else {
do {
x1=randnorm()*s1x;
}while (fabs(x1)>focus_xw/2.0);
p*=erf(focus_xw*0.5*M_SQRT1_2/s1x);
}
}else{
x1=randnorm()*igamma*K;
}
if (focus_yh){
if (!gauss_t){
/*sample uniformly but adjust weight*/
y1=randpm1()*focus_yh/2.0;
p*=exp(-(y1*y1)/(2.0*s1y*s1y));
}else {
do {
y1=randnorm()*s1y;
}while (fabs(y1)>focus_yh/2.0);
p*=erf(focus_yh*0.5*M_SQRT1_2/s1y);
}
}else{
y1=randnorm()*igamma;
}
z1=dist;
dx=x1-x;
dy=y1-y;
dz=sqrt(dx*dx+dy*dy+(dist-z)*(dist-z));
kx=(k*dx)/dz;
ky=(k*dy)/dz;
kz=(k*(dist-z))/dz;
/*spectral strength of radiation is given by Patterson*/
double k_kc=k/kc;
double K2_3=besselKnu(0.666666666666666666666666667,k_kc*0.5);
p*=2*Nper*1.33e13*Ee*Ee*Ie* k_kc*k_kc*K2_3*K2_3;
//p*=2*Nper*ALPHA/(M_PI*M_PI)*gamma2*Ie/CELE* 1e-4 * 0.75 *k_kc*k_kc*K2_3*K2_3;
/*randomly pick phase*/
if (randomphase){
phi=rand01()*2*M_PI;
}else{
phi=phase;
}
/*set polarization vector*/
Ex=0;Ey=0;Ez=0;
%}
MCDISPLAY
%{
double zz,dz;
const double xwidth=1e-2;
const double D=dist;
double x0,z0,x1,z1;
zz=-(length+lu)/2.0;
dz=lu/2.0;
while (zz<=(length-lu)/2.0){
box(0.0,gap/2.0+5e-4,zz,xwidth,1e-3,lu/2.0,0, 0, 1, 0);
box(0.0,-gap/2.0-5e-4,zz,xwidth,1e-3,lu/2.0,0, 0, 1, 0);
zz+=dz;
}
line(0.0,0.0,0.0, K*D*sin(igamma), 0.0, D);
line(0.0,0.0,0.0,-K*D*sin(igamma), 0.0, D);
line(0.0,0.0,0.0, 0.0, D*sin(igamma), D);
line(0.0,0.0,0.0, 0.0,-D*sin(igamma), D);
double psi,dpsi;
psi =-igamma;
dpsi= 2.0*igamma/32;
while(psi<igamma){
x0=D*sin(psi);
x1=D*sin(psi+dpsi);
z0=D*cos(psi);
z1=D*cos(psi+dpsi);
line(K*x0,0.0,z0,K*x1,0.0,z1);
line(0.0,x0,z0,0.0,x1,z1);
psi+=dpsi;
}
%}
END
|