File: glpk_solver.c

package info (click to toggle)
mccs 1%3A1.1-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 708 kB
  • ctags: 948
  • sloc: ansic: 6,051; yacc: 652; makefile: 148; lex: 129; sh: 26
file content (234 lines) | stat: -rw-r--r-- 8,086 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

/*******************************************************/
/* CUDF solver: glpk_solver.c                          */
/* Interface to the GLPK solver                        */
/* (c) Claude Michel I3S (UNSA-CNRS) 2009,2010,2011    */
/*******************************************************/


#include <math.h>
#include <glpk_solver.h>

#define OUTPUT_MODEL 0

// external function for solver creation
abstract_solver *new_glpk_solver(bool use_exact) { return new glpk_solver(use_exact); }

// solver initialisation
int glpk_solver::init_solver(CUDFVersionedPackageList *all_versioned_packages, int other_vars) {
  nb_packages = all_versioned_packages->size();

  // Coefficient initialization
  initialize_coeffs(nb_packages + other_vars);

  this->all_versioned_packages = all_versioned_packages;

  lp = glp_create_prob();
  glp_add_cols(lp, nb_vars);

  if ((lb = (CUDFcoefficient *)malloc((nb_vars+1)*sizeof(CUDFcoefficient))) == (CUDFcoefficient *)NULL) {
    fprintf(stderr, "glpk_solver: init_solver: not enough memory for lb.\n");
    exit(-1);
  }

  if ((ub = (CUDFcoefficient *)malloc((nb_vars+1)*sizeof(CUDFcoefficient))) == (CUDFcoefficient *)NULL) {
    fprintf(stderr, "glpk_solver: init_solver: not enough memory for ub.\n");
    exit(-1);
  }

  for (int i = 0; i <= nb_vars; i++) { lb[i] = 0; ub[i] = 1; }

  return 0;
}

// Does the solver provides integer variables
bool glpk_solver::has_intvars() { return true; }

// Set range of an integer variable
int glpk_solver::set_intvar_range(int rank, CUDFcoefficient lower, CUDFcoefficient upper) { 
  lb[rank+1] = lower;
  ub[rank+1] = upper;
  return 0; 
}

// write the problem into a file
int glpk_solver::writelp(char *filename) { glp_write_lp(lp, NULL, filename); return 0; }

// solve the current lp problem
int glpk_solver::solve() {
  int status = 0, nb_objectives = objectives.size();
  glp_iocp mip_params;
    
  glp_init_iocp(&mip_params);
  mip_params.gmi_cuts = GLP_ON;
  mip_params.mir_cuts = GLP_ON;
  mip_params.cov_cuts = GLP_ON;
  mip_params.clq_cuts = GLP_ON;
  mip_params.presolve = GLP_ON;
  mip_params.binarize = GLP_ON;

  for (int k = 0; k < nb_objectives; k++) {
    
    glp_cpx_basis(lp);
  
    if (status == 0) status = glp_intopt(lp, &mip_params);

    if (k + 1 < nb_objectives) {
      // Get objective value
      CUDFcoefficient objval = objective_value();

      if (verbosity > 0) printf(">>> Objective %d value : "CUDFflags"\n", k, objval);

      // Reset objective i coefficients
      for (int i = 1; i < objectives[k]->nb_coeffs + 1; i++) 
	glp_set_obj_coef(lp, objectives[k]->sindex[i], 0);

      // Set objective i+1 as the actual objective function
      for (int i = 1; i < objectives[k+1]->nb_coeffs + 1; i++) 
	glp_set_obj_coef(lp, objectives[k+1]->sindex[i], objectives[k+1]->coefficients[i]);

      // Add objective i = objval constraint
      int irow = glp_add_rows(lp, 1);
      glp_set_row_bnds(lp, irow, GLP_FX, objval, objval);
      glp_set_mat_row(lp, irow, objectives[k]->nb_coeffs, objectives[k]->sindex, objectives[k]->coefficients);    

      if (OUTPUT_MODEL) glp_write_lp(lp, NULL, "glpkpbs1.lp");
    }
  }
  if (status == 0)  return 1; else return 0;
}

// get objective function value
CUDFcoefficient glpk_solver::objective_value() { return (CUDFcoefficient)nearbyint(glp_mip_obj_val(lp)); }

// solution initialisation
int glpk_solver::init_solutions() { return 0; }

// return the status of a package within the final configuration
CUDFcoefficient glpk_solver::get_solution(CUDFVersionedPackage *package) { return (CUDFcoefficient)nearbyint(glp_mip_col_val(lp, package->rank+1)); }

// initialize objective function
int glpk_solver::begin_objectives(void) { 
  glp_set_obj_dir(lp, GLP_MIN);  // Problem is minimization
  return 0; 
}

// return the package coefficient of the objective function 
CUDFcoefficient glpk_solver::get_obj_coeff(CUDFVersionedPackage *package) { return (CUDFcoefficient)get_coeff(package); }

// return the package coefficient of the objective function 
CUDFcoefficient glpk_solver::get_obj_coeff(int rank) { return (CUDFcoefficient)get_coeff(rank); }

// set package coefficient to a value
int glpk_solver::set_obj_coeff(CUDFVersionedPackage *package, CUDFcoefficient value) { set_coeff(package, value); return 0; }
// set column coefficient to a value
int glpk_solver::set_obj_coeff(int rank, CUDFcoefficient value) { set_coeff(rank, value); return 0; }

// initialize an additional objective function 
int glpk_solver::new_objective(void) {
  reset_coeffs();
  return 0;
}

// add an additional objective function
int glpk_solver::add_objective(void) { 
  push_obj(); 
  return 0;
}

// finalize the objective function
int glpk_solver::end_objectives(void) {
  int i = 1;
  for (CUDFVersionedPackageListIterator ipkg = all_versioned_packages->begin(); ipkg != all_versioned_packages->end(); ipkg++) {
    glp_set_col_bnds(lp, i, GLP_DB, 0, 1);  // Set bounds to [0, 1]
    glp_set_col_name(lp, i, (*ipkg)->versioned_name); // Set the colunm name
    glp_set_col_kind(lp, i, GLP_BV); // It is a binary variable ...
    i++;
  }
  for (i = nb_packages+1; i <= nb_vars; i++) {
    char *name;
    char buffer[20];

    sprintf(buffer, "x%d", i);
    if ((name = (char *)malloc(strlen(buffer)+1)) == (char *)NULL) {
      fprintf(stderr, "CUDF error: can not alloc memory for variable name in glpk_solver::end_objective.\n");
      exit(-1);
    }
    strcpy(name, buffer);

    if ((lb[i] == 0) && (ub[i] == 1)) {
      glp_set_col_bnds(lp, i, GLP_DB, 0, 1);  // Set bounds to [0, 1]
      glp_set_col_name(lp, i, name); // Set the colunm name
      glp_set_col_kind(lp, i, GLP_BV); // It is a binary variable ...
    } else {
      glp_set_col_bnds(lp, i, GLP_DB, lb[i], ub[i]);  // Set bounds to [0, 1]
      glp_set_col_name(lp, i, name); // Set the colunm name
      glp_set_col_kind(lp, i, GLP_IV); // It is an integer variable ...
    }
  }

  // Set objective 0 as the actual objective function
  for (int k = 1; k < objectives[0]->nb_coeffs + 1; k++) glp_set_obj_coef(lp, objectives[0]->sindex[k], objectives[0]->coefficients[k]);

  return 0;
}

// initialize constraints
int glpk_solver::begin_add_constraints(void) { return 0; }

// begin a new constraint
int glpk_solver::new_constraint(void) { reset_coeffs(); return 0; }

// get the package coefficient of the current constraint
CUDFcoefficient glpk_solver::get_constraint_coeff(CUDFVersionedPackage *package) { return (CUDFcoefficient)get_coeff(package); }

// get the package coefficient of the current constraint
CUDFcoefficient glpk_solver::get_constraint_coeff(int rank) { return (CUDFcoefficient)get_coeff(rank); }

// set package coefficient of the current constraint
int glpk_solver::set_constraint_coeff(CUDFVersionedPackage *package, CUDFcoefficient value) { 
  set_coeff(package, value);
  return 0;
}

// set column coefficient of the current constraint
int glpk_solver::set_constraint_coeff(int rank, CUDFcoefficient value) { 
  set_coeff(rank, value);
  return 0;
}

// add current constraint as a greater or equal constraint
int glpk_solver::add_constraint_geq(CUDFcoefficient bound) {
  if (nb_coeffs > 0 ) {
    int irow = glp_add_rows(lp, 1);
    glp_set_row_bnds(lp, irow, GLP_LO, bound, 0);
    glp_set_mat_row(lp, irow, nb_coeffs, sindex, coefficients);
  }
  return 0;
}

// add current constraint as a less or equal constraint
int glpk_solver::add_constraint_leq(CUDFcoefficient bound) {
  if (nb_coeffs > 0 ) {
    int irow = glp_add_rows(lp, 1);
    glp_set_row_bnds(lp, irow, GLP_UP, 0, bound);
    glp_set_mat_row(lp, irow, nb_coeffs, sindex, coefficients);
  }
  return 0;
}

// add current constraint as an equality constraint
int glpk_solver::add_constraint_eq(CUDFcoefficient bound) {
  if (nb_coeffs > 0 ) {
    int irow = glp_add_rows(lp, 1);
    glp_set_row_bnds(lp, irow, GLP_FX, bound, bound);
    glp_set_mat_row(lp, irow, nb_coeffs, sindex, coefficients);
  }
  return 0;
}

// finalize constraints
int glpk_solver::end_add_constraints(void) { 
  if (OUTPUT_MODEL) glp_write_lp(lp, NULL, "glpkpbs.lp"); 
  return 0; 
}