1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
#!/usr/local/bin/perl -w
# (C) Copyright 2006, 2007, 2008, 2009 Stijn van Dongen
#
# This file is part of MCL. You can redistribute and/or modify MCL under the
# terms of the GNU General Public License; either version 3 of the License or
# (at your option) any later version. You should have received a copy of the
# GPL along with MCL, in the file COPYING.
sub explain {
print <<EOH;
purpose:
A small mcl implementation for educational purposes. It is written
in moderately terse perl.
implementation:
It is hash based, which implies that we get sparse matrices easily but at
the cost of using hashes. The hash-based matrices only store non-zero
entries.
The code is pretty straightforward. The interpretation routine implements
the mapping as described in the publications referenced in the (maxi) mcl
manual.
bonus:
Since the implementation is hash based you can use any type of labels, not
necessarily numbers.
Usage:
minimcl [--I=<num>] [--verbose] LABEL-INPUT
This means --I=<num> is optional (with 2.0 the default) and so is --verbose.
LABEL-INPUT should be a file name or stream (STDIN) where each line is of
the form
LABEL1 LABEL2 NUMBER
or
LABEL1 LABEL2
EOH
}
use strict;
use Getopt::Long;
$::verbose = 0;
my $I = 2.0;
my $help = 0;
if (!@ARGV) {
print STDERR "issue 'minimcl --help' for help\n";
print STDERR "expecting STDIN now\n";
}
if
(! GetOptions
( "verbose" => \$::verbose
, "I=f" => \$I
, "help" => \$help
)
)
{ print STDERR "option processing failed\n";
exit(1);
}
&explain && exit(0) if $help;
my $mx = {};
## This reads the labels into a graph structure.
##
while (<>) {
next if /^\s*#/;
if (/(\S+)\s+(\S+)\s+(\S+)/) {
my ($x, $y, $val) = ($1, $2, $3);
$val = 1.0 if $val !~ /^[0-9]/;
$mx->{$x}{$y} = $val+0;
$mx->{$y}{$x} = $val+0;
}
elsif (/(\S+)\s+(\S+)/) {
$mx->{$1}{$2} = 1.0;
$mx->{$2}{$1} = 1.0;
}
}
matrix_add_loops($mx);
matrix_make_stochastic($mx);
matrix_dump($mx, 3, "start") if $::verbose;
my ($cl, $limit) = mcl($mx, $I);
matrix_dump($limit, 1, "limit") if $::verbose;
matrix_dump($cl, 0, "clustering");
sub mcl {
my ($mx, $I) = @_;
my $chaos = 1;
my $ite = 1;
while ($chaos > 0.001) {
my $sq = matrix_square($mx);
my $progress = sprintf "chaos %.5f ite %d", $chaos, $ite;
matrix_dump($sq, 3, "X $progress") if $::verbose;
$chaos = matrix_inflate($sq, $I);
matrix_dump($sq, 3, sprintf "I $progress") if $::verbose;
print STDERR "$progress\n" if !$::verbose;
$mx = $sq;
$ite++;
}
my $cl = matrix_interpret($mx);
return ($cl, $mx);
}
# dangersign:
# can this yield a < b < c < a ?
sub cmpany { local $^W = 0; $a <=> $b || $a cmp $b }
sub matrix_dump {
my ($mx, $modes, $msg) = @_;
print "($msg\n";
for my $n (sort cmpany keys %$mx) {
my @nb = $modes & 2
? map { sprintf "%s:%.3f", $_, $mx->{$n}{$_}; } sort cmpany keys %{$mx->{$n}}
: map { sprintf "%s", $_; } sort cmpany keys %{$mx->{$n}};
local $" = "\t";
if ($modes & 1) {
printf "%-20s%s\n", $n, "@nb";
}
else {
print "@nb\n";
}
}
print ")\n";
}
sub matrix_square {
my ($mx) = @_;
my $sq = {};
my @nodes = keys %$mx;
for my $n (@nodes) {
$sq->{$n} = matrix_multiply_vector($mx, $mx->{$n});
}
return $sq;
}
sub matrix_multiply_vector {
my ($mx, $v) = @_;
my $w = {};
for my $e (keys %$v) {
my $val = $v->{$e};
for my $f (keys %{$mx->{$e}}) {
$w->{$f} += $val * $mx->{$e}{$f};
}
}
return $w;
}
sub matrix_make_stochastic {
my ($mx) = @_;
matrix_inflate($mx, 1); # return value chaos is meaningless for
# non stochastic input.
}
sub matrix_add_loops {
my ($mx) = @_;
for my $n (keys %$mx) {
$mx->{$n}{$n} = 0 if defined($mx->{$n}{$n});
my $max = vector_max($mx->{$n});
$mx->{$n}{$n} = $max ? $max : 1;
}
}
sub vector_max {
my ($v) = (@_);
my $max = 0;
for my $n (keys %$v) {
$max = $v->{$n} if $v->{$n} > $max;
}
return $max;
}
sub vector_sum {
my ($v, $p) = (@_);
my $sum = 0;
for my $n (keys %$v) {
$sum += $v->{$n} ** $p;
}
return $sum;
}
sub matrix_inflate { # prunes small elements as well.
my ($mx, $I) = @_;
my @nodes = keys %$mx;
my $chaos = 0;
for my $n (@nodes) {
my $sum = 0;
my $sumsq = 0;
my $max = 0;
for my $nb (keys %{$mx->{$n}}) {
if ($mx->{$n}{$nb} < 0.00001) {
delete($mx->{$n}{$nb});
next;
}
$mx->{$n}{$nb} **= $I;
$sum += $mx->{$n}{$nb};
}
if ($sum) {
for my $nb (keys %{$mx->{$n}}) {
$mx->{$n}{$nb} /= $sum;
$sumsq += $mx->{$n}{$nb} ** 2; # sum x_i^2 over stochastic vector x
$max = $mx->{$n}{$nb} if $max < $mx->{$n}{$nb};
}
}
$chaos = $max - $sumsq if $max - $sumsq > $chaos;
}
return $chaos; # only meaningful if input is stochastic
}
# assumes but does not check doubly idempotent matrix.
# can handle attractor systems of size < 10.
sub matrix_interpret { # recognizes/preserves overlap.
my ($limit) = @_;
my $clusters= {}; # hash of arrayrefs.
my $attrid = {};
my $clid = 0;
for my $n (keys %$limit) { # crude removal of small elements.
for my $nb (keys %{$limit->{$n}}) {
delete $limit->{$n}{$nb} if $limit->{$n}{$nb} < 0.1;
}
}
my $attr = { map { ($_, 1) } grep { $limit->{$_}{$_} } keys %$limit };
# _ contract 'connected attractors', assign cluster id.
for my $a (keys %$attr) {
next if defined($attrid->{$a});
my @aa = ($a);
while (@aa) {
my @bb = ();
for my $aa (@aa) {
$attrid->{$aa} = $clid;
push @bb, grep { defined($attr->{$_}) } keys %{$limit->{$aa}};
}
@aa = grep { !defined($attrid->{$_}) } @bb;
}
$clid++;
}
for my $n (keys %$limit) {
if (!defined($attr->{$n})) { # look at attractors
for my $a (grep { defined($attr->{$_}) } keys %{$limit->{$n}}) {
$clusters->{$attrid->{$a}}{$n}++;
}
}
else {
$clusters->{$attrid->{$n}}{$n}++;
}
}
return $clusters;
}
|