
MCU 8051 IDE handbook

Martin Ošmera <martin.osmera@moravia-microsystems.com>

October 12, 2014

2

I would like to thank to the following people for their support during the
project development:

• Andre Cunha (Brazil) for review of this document.

• Yuanhui Zhang (China) for bug reports and help with debugging.

• Kara Blackowiak (USA) for certain code reviews.

• Marek Nožka (Moravia, CZ, EU) for help with debugging.

• Kostya V. Ivanov (Russia) for bug fixes in the simulator engine.

• Shakthi Kannan (India) for adding this software to the FEL project
and for a few patches.

• Trevor Spiteri for help with debugging (patches) the HD44780 sim-
ulator.

• Miroslav Hradílek (EU) for bug reports and suggestions

• Fabricio Alcalde (Argentina) for suggestions and bug reports.

• Francisco Albani (Argentina) for suggestions and a few bug reports.

3

Contents

Preface 5
Goals of the project . 5
Requirements . 6
Intended Audience . 7

1 Brief introduction 9
1.1 Main components of MCU 8051 IDE 9
1.2 What is MCS-51 . 12
1.3 What is the Assembly language 12

2 Quick start 13
2.1 Demonstration project . 13
2.2 Your first project in MCU 8051 IDE 14

3 Detailed introduction to GUI 15
3.1 Source code editor . 15

3.1.1 Syntax highlight and validation 15
3.1.2 Spell checking . 15
3.1.3 Auto-completion . 16
3.1.4 Editor command line 16

3.2 Bottom panel . 18
3.2.1 Main panel of the MCU simulator 18
3.2.2 C variables . 18
3.2.3 Graph showing voltage levels 19
3.2.4 Messages panel . 19
3.2.5 Notes . 20
3.2.6 Calculator . 20
3.2.7 Find in files . 21
3.2.8 Terminal emulator . 21

3.3 Left panel . 22
3.3.1 List of opened files . 22

4 CONTENTS

3.3.2 List of project files . 22
3.3.3 SFR watches . 22
3.3.4 File system browser . 22

3.4 Right panel . 22
3.4.1 List of bookmarks . 22
3.4.2 List of breakpoints . 23
3.4.3 Instruction details . 23
3.4.4 Data register watches 23
3.4.5 Subprograms call monitor 24
3.4.6 List of symbols . 24
3.4.7 HW plug-ins manager 24

3.5 Other tools . 25
3.5.1 SFR map . 25
3.5.2 Map of bit addressable area 25
3.5.3 Stack monitor . 25
3.5.4 Symbol viewer . 26
3.5.5 ASCII chart . 27
3.5.6 8051 Instruction Table 27
3.5.7 8-segment editor . 27
3.5.8 Stopwatch . 27
3.5.9 Scribble notepad . 27
3.5.10 Base converter . 28
3.5.11 RS-232 debugger . 28
3.5.12 Hexadecimal editors 29
3.5.13 Hibernation of simulated program 30
3.5.14 Interrupt monitor . 30
3.5.15 Conversions between *.hex, *.bin and *.adf files 31
3.5.16 Normalization of source code indentation 31
3.5.17 Change letter case . 31
3.5.18 User defined commands 32
3.5.19 Clean-up project folder 33
3.5.20 File statistic . 33

3.6 Configuration dialogues . 33

4 Build-in macro-assembler 37
4.1 Statements . 37
4.2 Symbols . 37
4.3 Constants . 38
4.4 Expressions . 39
4.5 The instruction set processing 40
4.6 Assembler directives . 41

CONTENTS 5

4.7 Assembler Controls . 45
4.8 Predefined Symbols . 47
4.9 Segment type . 49
4.10 Conditional Assembly . 51
4.11 Macro Processing . 52
4.12 Reserved keywords . 56
4.13 Compatibility with ASEM-51 57
4.14 List File Format . 58
4.15 Specification of Intel R©8 HEX Format 60

5 Disassembler 61

6 MCU simulator 63
6.1 Short introduction . 63
6.2 Modes of simulation . 63
6.3 Waring conditions . 64
6.4 Limitations . 64
6.5 Virtual hardware . 65

6.5.1 DS1620 temperature sensor 65
6.5.2 File interface . 65
6.5.3 LED Panel . 66
6.5.4 Single LED Display . 66
6.5.5 Multiplexed LED Display 66
6.5.6 LED Matrix . 67
6.5.7 Matrix Keypad . 67
6.5.8 Simple Keypad . 68
6.5.9 LCD display controlled by HD44780 68

7 Writing hardware tool control plug-ins 69
7.1 Foreword . 69
7.2 How to write your own plug-in 70
7.3 Using MCU 8051 IDE API . 71
7.4 A basic example . 72
7.5 Random remarks . 73

8 Command Line Interface 75

9 Translating the IDE into different languages 77

A License 79

6 CONTENTS

B Regression testing 81
B.1 Foreword . 81
B.2 More about the implementation 81

C Project web page and other media 83
C.1 Official project web page . 83
C.2 Other media . 84
C.3 GIT repository . 84

D 8051 Instructions in numerical Order 85

E 8051 Instructions in alphabetical order 91

F List of supported micro-controllers 97
F.0.1 Intel R© . 97
F.0.2 Atmel R© . 97

G Change log 99

7

Preface

Goals of the project
MCU 8051 IDE is an integrated development environment for microcon-
trollers based on MCS-51 intended for Assembly language and C language.
This IDE is currently available on GNU/Linux and Microsoft R©W̃indows R©
(since version 1.3.6). This program was originally intended for education
purposes, but now the area of potential usage is surely significantly wider.
This program was created to fill a gap in the open source software of this
kind. User interface, source codes, documentation, web pages, etc., are writ-
ten in English in order to make this software available to as many user as
possible, but there is support for internationalization using i18n since ver-
sion 1.3.10. This documentation is written in LATEX. It is very important
to note that this software was not developed for any company, person or
something similar and it is completely noncommercial, open source software
distributed under GNU GPLv2 license intended for a group of people with
common interest, in this case 8051.

MCU 8051 IDE should offer:

¬ A transparent view on a simulated program for 8051;
­ Easy source code editing even for an user with small knowledge of the

assembly language;
® User friendly advanced IDE for MCS-51.

List of the most important parts of MCU 8051 IDE:

+ Source code editor;
+ Optimization capable macro-assembler;
+ Advanced MCU simulator;
+ Hexadecimal editor;

http://gnu.cz/article/30/pdf/gpl-cz.pdf

8 CONTENTS

+ Interface for hardware tool control plug-ins;
+ Scientific calculator and special calculator optimized for 8051.

Requirements
Hardware requirements are not defined. This program should run without
problems on all POSIX systems (like GNU/Linux, etc.), where all of the
software dependencies were satisfied. The IDE is officially distributed as a
source code package (primary programming language is TCL), RPM package
(currently available in official RHEL repositories), DEB package (currently
available in official Debian repositories) and ebuild for Gentoo Linux (cur-
rently NOT available in the portage tree).

Package Min. version Download location
Required packages: (The IDE will not run without these packages)
tcl 8.5 http://www.tcl.tk/software/tcltk/downloadnow85.html
tk 8.5 http://www.tcl.tk/software/tcltk/downloadnow85.html
bwidget 1.8 http://sourceforge.net/projects/tcllib
itcl 3.4 http://sourceforge.net/projects/incrtcl
tdom 0.8 http://www.tdom.org
tkimg 1.3 http://sourceforge.net/projects/tkimg
tcllib 1.6 http://sourceforge.net/projects/tcllib
Optional packages: (Functionality might be unnecessarily limited without these packages)
Tclx 8.4 http://tclx.sourceforge.net

(Signal handling (signals like SIGINT)
cmake 2.6 http://www.cmake.org/HTML/Download.html

(If you prefer this way of installation: “./configure && make && make install”)
rxvt-unicode 8.3 http://software.schmorp.de

(If you want terminal emulator)
asem-51 1.3 http://plit.de/asem-51/download.htm

(If you want to use a really good assembler :))
sdcc 2.9 http://sdcc.sourceforge.net/

(If you want to used C language compiler)
doxygen 1.3 www.doxygen.org/

(If you want to use doxygen directly from the IDE)
indent 1.2 http://www.gnu.org/software/indent/

(If you want to use auto-indent function for C language)
hunspell 1.2 http://hunspell.sourceforge.net

(If you want to have spell checker function available)
bash 4.0 http://tiswww.case.edu/php/chet/bash/bashtop.html

(If you want to have spell checker function available)
gawk 3.1 http://www.gnu.org/software/gawk/

(If you want to have spell checker function available)

Table 1: Software requirements

http://www.tcl.tk/software/tcltk/downloadnow85.html
http://www.tcl.tk/software/tcltk/downloadnow85.html
http://sourceforge.net/projects/tcllib
http://sourceforge.net/projects/incrtcl
http://www.tdom.org
http://sourceforge.net/projects/tkimg
http://sourceforge.net/projects/tcllib
http://tclx.sourceforge.net
http://www.cmake.org/HTML/Download.html
http://software.schmorp.de
http://plit.de/asem-51/download.htm
http://sdcc.sourceforge.net/
www.doxygen.org/
http://www.gnu.org/software/indent/
http://hunspell.sourceforge.net
http://tiswww.case.edu/php/chet/bash/bashtop.html
http://www.gnu.org/software/gawk/

CONTENTS 9

Intended Audience
This manual is intended for any individual, regardless of his or her experience
with assembler, C language, MCU 8051 IDE or Linux, but it is assumed here
that the reader is familiar with basic concepts of assembly language program-
ming and with 8051 processor architecture. Advanced users are not likely to
read this manual, but all suggestions on documentation will be considered.
If you would like to contribute to this project or the documentation, please
consult the project web page.

Thanks for your cooperation which helps to make this software better.

10 CONTENTS

11

Chapter 1

Brief introduction

This chapter will provide you with a brief introduction about the main com-
ponents that are part of MCU 8051 IDE. The purpose of this chapter is to
contextualize you on the sofware, informing about the parts that composes
it. The next chapter will cover rapidly the Graphical User Interface, which
will be described in further details on chapter.

1.1 Main components of MCU 8051 IDE
Editor The code editor is featured with syntax highlighting and validation,
auto-completion and spell checking for comments 1, as well as a command
line that speeds up the access to various editor options. It also provides
a panel showing line numbers, bookmarks, breakpoints and warnings from
syntax validator. Editor is capable to export the source code within it as
XHTML and LATEX and contains a number of useful tools like automatic
indentation, searching and replacement of expressions, copy to clipboard,
paste from clipboard, among others.

Assembler The assembler is one of the integral parts of MCU 8051 IDE. It
is a macro assembler with support for dozens of directives and capable of per-
forming peephole optimizations. Support for peephole optimizations means
that the assembler can attempt to optimize the resulting code for higher exe-
cution speed and lower size without tempering with its very functionality. It
is important to note that automatic peephole optimization can sometimes be
harmful and so it is disabled by default. A macro assembler is a software that
allows the user to define a macro instruction, which consists of a sequence

1Spell checking for comments is available only if you have installed the Hunspell pro-
gram. This feature is currently not available on MS R©Windows R©OS.

12 CHAPTER 1. BRIEF INTRODUCTION

of basic instructions, and use it later instead of repeatedly copying and past-
ing the set of instructions over and over along the source code. Assembler
behavior can be configured either globally, using the proper configuration di-
alog, or locally in source code, by means of assembler directives and control
sequences (e.g. $TITLE(’Some title to show in the code listing’)).
The assembler is capable of generating four kinds of output code:

+ Object code (machine code) as an hexadecimal file, with .hex extension
and in Intel R© 8 HEX format;

+ Object code (machine code) as a binary file, with .bin extension and
in format of raw binary data;

+ Code listing, in .lst extension;
+ Code for integrated MCU simulator, in .adf extension.

Simulator The simulator is a software component intended for the simu-
lation of the chosen microcontroller in a virtual environment. It allows user
to monitor precisely what is happening in the MCU in an exact moment in
time, as well as to modify its components, for instance by altering the value
of a register, canceling an interrupt or forcing a subprogram to return. In
that way it might be possible to ferret out certain flaws in the program being
debugged, which would be hard or nearly impossible to find and/or fix in
other ways. Even though it is better to have ICD (In-Circuit Debugger) or
ICE (In-Circuit Emulator) at hand, MCU 8051 IDE in current version does
not support neither of them really sorry. MCU simulator implemented in
this IDE supports dozens of microcontrollers and most of them are treated
in slightly different way allowing to take into account most of the nuances be-
tween the supported MCUs. User can adjust simulator behavior to fit his or
her needs by modifying clock frequency, size of connected external code, data
memory and others, or for instance by disabling or enabling certain warnings,
which pops up when the simulated program do something “strange”, like some
kind of invalid access into memory or stack overflow or underflow. Besides
that, it is possible for the user to modify all registers which the MCU deals
with, including those which are not accessible by the running program, like
the Program Counter. User have always an overview of all possible, pending
and active interrupts and can tamper with them at any time. The simu-
lator also allows for altering code memory and all kinds of data memories.
The program being simulated can be at any time "hibernated" into a file,
preferably with .m5ihib extension, and resumed later from this same file.
Such a file contains the entire state of the simulator at the point in which
the program was hibernated.

1.1. MAIN COMPONENTS OF MCU 8051 IDE 13

Project management It is a functionality that allows the IDE to remem-
ber certain set of source code files along with a set of configuration param-
eters. Projects are stored in XML (eXtensible Markup Language) files with
extension .mcu8051ide. These files are human readable and their precise
formatting is described in their inline DTD (Document Type Declaration).
Their encoding is UTF-8 (Unicode Transformation) and as EOL (End Of
Line) character they use LF (Line Feed). The reason for that is to make it
possible for the user to implement his or her own tools for manipulating with
them.

Scientific calculator MCU 8051 IDE scientific calculator is implemented
as a simple scientific calculator capable of computation in four number sys-
tems: hexadecimal, decimal, octal and binary, and with three angle units:
radians, degrees and grad. Integral part of the calculator is also a simple tool
intended solely for computing preset values for MCU timers.

Special calculator The experience in MCU programming shows that it
is very useful to have some tools at hand, capable of performing recurrent
boring calculations that spend time to be done by hand. MCU 8051 IDE
special calculator is intended for performing certain simple specialized calcu-
lations related to 8051. For instance, this calculator is capable of generating
assembly language code implementing a wait loop with specified parameters.

Hexadecimal editor This utility is used here for watching and modifying
large blocks of raw data in various memory types of the simulated MCU
(Code, IDATA, XDATA, EEPROM, etc.). There is also hexadecimal editor
intended for editing Intel R© HEX 8 files. Other hexadecimal editors are
specially designed to fit specific needs of the given purpose; for example,
there is an hexadecimal editor for viewing and editing code memory, which
displays the current position of the program counter in the machine code of
the simulated program.

Disassembler This tool can translate once assembled code back to source
code. It is important to note that it is somewhat improbable that the result-
ing source code will look "reasonable" It is due to DB and DW and not fixed
instruction word length on 8051. Nevertheless, such a generated source code
must posses exactly the same functionality when it gets assembled again.
Disassembler implemented in this IDE is frankly speaking only a little more
that just a toy. If you want a really capable disassembler, maybe you should
try some tool like D52 http://www.8052.com/users/disasm/.

http://www.8052.com/users/disasm/

14 CHAPTER 1. BRIEF INTRODUCTION

Notepad In this IDE, it is a simple rich text editor for writing user notes
of whatever kind. Originally, it was intended for writing a list of things which
remain to be done in your project.

Command Line Interface (CLI) It is a tool that allows the use of some
IDE functions without entering it’s GUI. You can get list of available options
by typing mcu8051ide -h or mcu8051ide –help to your terminal emula-
tor. You can, for example, use just the assembler of the IDE or convert an
Intel R© HEX 8 file to a raw binary file.

1.2 What is MCS-51

Figure 1.1: i8051 micro-
architecture

The Intel MCS-51 is a Harvard architecture, single
chip microcontroller series which was developed by
Intel in 1980 for use in embedded systems. Today
there is a vast range of enhanced 8051-compatible
devices manufactured by a number of independent
manufacturers. They have 8-bit ALU, accumulator
and 8-bit Registers (hence they are an 8-bit mi-
crocontrollers), they have 16-bit address bus, 8-bit
data bus, boolean processing engine which allows
bit-level boolean logic operations to be carried out
directly and efficiently on select internal registers
and select RAM locations, etc.

1.3 What is the Assembly lan-
guage
An assembly language is a low-level programming language for computers,
microprocessors, microcontrollers and other integrated circuits. It imple-
ments a symbolic representation of the binary machine codes and other con-
stants needed to program a given CPU architecture. Processors based on
MSC-51 have compatible instruction set, similar registers and many other
things are generally very similar among them.

Here is an example of how a piece of 8051 assembly code looks like:

Code 1 An example piece of code written in 8051 assembly language
main:
if test=2

mov R0, #25h
; Configure EEPROM
orl EECON, #38h
inc R0

endif
X0MI:

anl EECON, #(0FFh - 020h)
movx @R0, A

15

Chapter 2

Quick start

2.1 Demonstration project
The aim of the demonstration project is to provide an easy way to explore
the IDE without reading long and boring documents like this one. :) The
demonstration project can be opened from the welcome dialog (“Main Menu”
→ “Help” → “ Welcome dialog” → “Open demonstration project”.)
Demonstration project should introduce new user into usage of the most
common functions of the IDE like assembling the code, running simulator
and so on. Demonstration project cannot be modified by the user in order
to make it “less volatile”.

Figure 2.1: MCU 8051 IDE with the demonstration project opened within it

16 CHAPTER 2. QUICK START

2.2 Your first project in MCU 8051 IDE

Figure 2.2: Project creation dialog

At first let me explain what the MCU 8051 IDE’s
project really is. It is a set of some files in
some directory, let’s call this directory the
project directory. And this along with the
file with extension .mcu8051ide forms the
project. The file with .mcu8051ide exten-
sion defines what source code files belongs
to the project and contains additional infor-
mation about the project, like who is the
project author or for what exact MCU is
the project intended.

To create you project you have to spec-
ify the project directory and the MCU type
for which you will develop your code. This
is done in project creation dialog. This di-
alog can be accessed from main menu “Main Menu” → “Project” → “ New”.
After this step you can specify some additional information about the project
in project editing dialog.

Once you have created a new project you can begin to develop you code
from your chosen processor. When you want to save your code press Ctrl+S,
Ctrl+N creates a new file and an existing file can be opened by Ctrl+O. Each
opened file can be added or removed to/from your current project. Ctrl+B
creates or deletes bookmark and Ctrl+Shift+B creates or deletes breakpoint.
Project files, the files which are parts of the project, are opened each time
you open the project. You can have more than one project opened at the
time.

Simulator can be started and shut down by pressing F2 key and assembler
or compiler is run when F11 is pressed. Output from assembler or compiler is
displayed on the bottom panel in tab “Messages”. And main MCU simulator
panel is also available on the bottom panel in tab “Simulator”.

On the left side you can find list of currently opened source code files
and list of project files. And on the right side probably most useful tool
at the beginning might be “Instruction details”, this tool displays help for
instruction in the code editor on line with cursor. In the right panel you can
find for example also list of bookmarks and breakpoints.

17

Chapter 3

Detailed introduction to GUI

3.1 Source code editor

3.1.1 Syntax highlight and validation

Figure 3.1: Syn-
tax validation configu-
ration button

The editor is equipped with an implementation of a syn-
tax highlighting algorithm based on simplified syntax
analysis. And that enables a limited on-line syntax val-
idation. That means that as the user writes down the
code, editor tries to check it for syntactical correctness.
Syntax validator marks “strange looking” lines with ex-
clamation mark and tries to underline exact point of
potential syntax errors. This feature can be disabled
as well as syntax highlighting can be disabled. By disabling these features
you can make the editor work faster, but it would probably mean only a
unnecessary limitation. There are three levels of syntax validation:

• 0: Disabled

• 1: Fast basic validation

• 2: Slow advanced validation

Syntax validation configuration button react to left and right click with the
mouse pointer. Right button click decreases the level of validation and the
left button click increases it.

3.1.2 Spell checking

18 CHAPTER 3. DETAILED INTRODUCTION TO GUI

Figure 3.2: Spell
checker configuration
button

There is also configurable spell checking function avail-
able. It underlines words which are marked by Hun-
spell1 as incorrectly spelled. This function applies to
comments in the code or the entire code in case that
the syntax highlight function has been disabled. User
can choose from any of Hunspell or Myspell dictionar-
ies installed on his or her system. This feature can
also be turned off. It makes sense that this function is

completely dependent on the Hunspell program, if it is not installed, spell
checking won’t work here.

3.1.3 Auto-completion

Figure 3.3: Syntax highlight, syntax
validation and the pop-up based auto-
completion all in action

Pop-up based auto-completion is func-
tion which should make it easier to
use long names for labels, macros, vari-
ables, functions, constants, etc. This
function is interconnected with syntax
editor’s analyzer used for syntax high-
light and validation and for the table of
symbols in the right panel. So it main-
tains an overview of all symbols defined
in your source code file and then when
you write just a few characters which
a symbol starts with, this function will
pop-up window offering you all defined symbols beginning with that letters.
Note that this feature can be disabled in editor configuration dialog and note
also that besides symbols it offers also list of assembly language instruction
mnemonics and assembler directives.

3.1.4 Editor command line
Editor is featured with a command line, which can be invoked by pressing
F10 key by default, and dismissed by pressing Esc. The command line ap-
pears below the editor above its status bar. From the command line you
can perform variety of operations like conversions between various numerical
bases, run simulator, insert current date and many more. In the command
line it is sufficient to write just a few characters which the requested com-
mand starts with and which are sufficient to uniquely identify the command
and press enter. You can see help for each command by running command

1Hunspell is a spell checker and morphological analyzer. See http://hunspell.
sourceforge.net for details.

http://hunspell.sourceforge.net
http://hunspell.sourceforge.net

3.1. SOURCE CODE EDITOR 19

help list. Command line is featured with its own color highlight, history
and auto-completion.

Command Arguments Description
d2h <decimal number> Convert decimal number into hexadecimal
d2o <decimal number> Convert decimal number into octal
d2b <decimal number> Convert decimal number into binary
h2d <hexadecimal number> Convert hexadecimal number into decimal
h2o <hexadecimal number> Convert hexadecimal number into octal
h2b <hexadecimal number> Convert hexadecimal number into binary
o2h <octal number> Convert octal number into hexadecimal
o2d <octal number> Convert octal number into decimal
o2b <octal number> Convert octal number into binary
b2h <binary number> Convert binary number into hexadecimal
b2d <binary number> Convert binary number into decimal
b2o <binary number> Convert binary number into octal
animate Animate simulated program
assemble Run assembler
auto-indent Automatically indent the edited code
bookmark Create or delete bookmark on the current line
breakpoint Create or delete breakpoint on the current line
capitalize Capitalize selected text
clear Clear history
comment Comment selection
copy Copy selection
custom <command number> Run user command
cut Cut selection
date <date format> Insert current time and/or date
exit Leave command line
exit-program Exit the IDE
find <string> Find a string
goto <line number> Go to the specified line
help <command name> Display help for the specified command
char <character code> Insert a character
indent Indent selection
kill-line Delete current line
open <file name> Open the specified file
paste Paste text from clipboard
redo Take back last undo
reload Reload current document
replace <string> <replacement> Replace a string with another string
run Run simulator in animation mode
save Save the current file
set-icon-border Show/Hide icon border
set-line-numbers Show/Hide line numbers
sim Engage/Disengage simulator
step Step simulated program
tolower Convert selected text to lowercase
toupper Convert selected text to uppercase
uncomment Comment current line
undo Undo the last text editing operation
unindent Decrease indentation level of the current line
hibernate [<target file>] Hibernate simulated program
resume [<source file>] Resume hibernated program
switch-mcu <MCU name> Switch current MCU simulation mode to another MCU
set-xcode <size of XCODE mem.> Set size external data memory for simulated MCU
set-xdata <size of XDATA mem.> Set size external program memory for simulated MCU

Table 3.1: Available commands

20 CHAPTER 3. DETAILED INTRODUCTION TO GUI

3.2 Bottom panel

3.2.1 Main panel of the MCU simulator

This panel is the main part of the simulator user interface. It shows all MCU
registers along with content of internal data memory. And contains small
toolbar with 6 buttons: “ Start”/“ Shutdown”, “ Reset”, “ Step back”,
“ Step”, “ Step over”, “ Animate” and “ Run”. All visible registers can be
modified from here and most SFR registers are represented by enumeration of
bits, where each particular bit can be modified separately, green color means
logical one and red means zero. Each bit has its own tooltip help with short
description of its purpose and status bar tip with bit address and bit name.

Figure 3.4: Main panel of the simulator

Figure 3.5: Highlighted
SFR register

Figure 3.6: Tool tip help
for a special function bit

Figure 3.7: Representa-
tion of a register value in
various numeric bases

3.2.2 C variables

This panel is a part of simulator user interface that maintains a list of global
static variables defined in your C language code. Names of variables are
displayed along with their current values in simulated MCU. If you program
is not written in C language then this tool has no purpose for you at all.
Otherwise the purpose of this panel is to make it easier to simulate a program
for 8051 written in C language and see what is “really” happening in there.
This tool is capable of extracting variable values from multiple registers and
the displaying them as one variable, one value. Alteration of variable values
is also possible. And search panel in the top right corner of the panel might

3.2. BOTTOM PANEL 21

help you with finding exact variable which you need to see. But note that
functionality of this tool is in fact severely limited, it supports only global
static variables, integers and floats, but variable value modification is allowed
only for integer variables, no floats.

3.2.3 Graph showing voltage levels

This panel might help you to see what is happening on simulated GPIO2

lines. Resolution and grid can be adjusted to better fit your needs. There
are three graphs, one for port latches, one for port outputs (without any
virtual HW) and one for the most realistic GPIO simulation which this IDE
can do.

Figure 3.8: GPIO Graph

3.2.4 Messages panel

This panel displays output from the build-in assembler, external assemblers,
C compiler and other external tools used in this IDE, which prints some-
thing important to standard output. Output from assemblers and SDCC
(C compiler) is parsed to highlight warnings and errors and convert them to
hyperlinks pointing to source code if possible. The panel also implements
a tool for searching strings in the displayed text. User can make this tools
visible by pressing Ctrl+F.

Figure 3.9: Messages panel

2General Purpose Input Output

22 CHAPTER 3. DETAILED INTRODUCTION TO GUI

3.2.5 Notes

This is your personal notes for whatever you want. Originally it was intended
for writing down a list of things which you need to finish in your work, so
some sort of a to do list. But it is just a simple rich text editor with separate
file specific notepad. User can use it as he or she consider appropriate.

Figure 3.10: Personal notes

3.2.6 Calculator

Calculator is here more or less just for completeness. But you might still
find it to a real asset to your efforts. This calculator is capable of performing
common arithmetical operations, computing trigonometric functions, logi-
cal operations, etc. Supported numeral systems are hexadecimal, decimal,
octal and binary in both integer and real numbers. Supported angular mea-
surement units are degrees, radians and gradians. The calculator is also
equipped with three memory cells where you can save arbitrary numbers for
future computations. On the right side there is a simple calculator dedicated
to calculation timers preset values for the specified time, clock frequency, etc.
3

Figure 3.11: Calculator

3Essentially the same but much more advanced function has also the special calculator.

3.2. BOTTOM PANEL 23

3.2.7 Find in files

With this tool you can search all files in certain directory which names
matches specified GLOB4 pattern. The search is made for a plain string
or regular expression match. This tool might be very useful when you are
dealing with many, possibly large, source code files and you suddenly want to
find something specific in them. Each line printed in the list of found entries
is a hypertext link which opens the file mentioned in it in the source code
editor and navigates the editor to line matching the item. In other words it
generally the same as well known Unix command “grep”5, but with graphical
user interface.

3.2.8 Terminal emulator

This is a common color VT1026 terminal emulator for the XWindow System7

as you probably know. More precisely It’s embedded rxvt-unicode terminal
emulator by Marc A. Lehmann and others. Background and foreground
colors used in the terminal emulator are configurable in “Terminal config-
uration Dialog”. Note that this feature in not available on Microsoft R©
Windows R© operating system and probably will never be, because terminal
emulator would have only a little use there.

Figure 3.12: Embedded rxvt-unicode terminal emulator, with the Midnight Commander
running in it

4An instance of pattern matching behavior, for example “*.c++” matches all files with
“.c++” extension.

5A command line text search utility originally written for Unix. The name is taken
from the first letters in global/regular expression/print. Its official date of creation is given
as March 3, 1973.

6A video terminal that was made by Digital Equipment Corporation (DEC). Its detailed
attributes became the de facto standard for terminal emulators.

7Computer software system and network protocol that provides a basis for graphical
user interfaces.

http://software.schmorp.de/pkg/rxvt-unicode.html
http://software.schmorp.de/pkg/rxvt-unicode.html
http://www.midnight-commander.org/

24 CHAPTER 3. DETAILED INTRODUCTION TO GUI

3.3 Left panel

3.3.1 List of opened files

Shows list of all files opened withing the current project. Each entry has its
own pop-up menu. Noteworthy features are search bar, sorting by name, size,
etc. and open with an external editor. Each file can be added or removed
from the list of project files. There is not much to say about it, it’s just a
simple list with a few nice features but nothing complex.

3.3.2 List of project files

Shows list of all files assigned to the current project. Each entry has its own
pop-up menu. Noteworthy features are search bar, sorting by name, size,
etc. and open with an external editor. Each file can be excluded from the
list of project files, opened or close withing the project.

3.3.3 SFR watches

Figure 3.13: SFR watches

From here you can see all special function reg-
isters on your chosen MCU in one compact list.
Search panel might help you locating particular
SFR in this panel and also in the main simula-
tor panel. Each register has two numerical rep-
resentations of its value in the simulated MCU,
decimal and hexadecimal.

3.3.4 File system browser

This panel should help you quickly navigate in
your file system in order to open files you want
to see as quickly as possible. But many people
generally don’t like panels like this and will al-
ways use only file selection dialog instead.

3.4 Right panel

3.4.1 List of bookmarks

From here you can easily navigate trough all bookmarks made in the current
source code file. The panel also highlights item in the list which corresponds

3.4. RIGHT PANEL 25

to the current line (line with cursor) in the source code editor. You can also
remove all bookmarks at once by pressing the “ Clear all” button.

3.4.2 List of breakpoints

Pretty much the same as list of bookmarks, but this panel shows breakpoints
instead of bookmarks, that is the only difference.

3.4.3 Instruction details

Figure 3.14: Instruction details

When you are writing a code in
the assembly language, this panel
might be a great help for you. It
shows all valid sets of operands
for the instruction on your cur-
rent cursor position in the source
code and highlights the set which
you are probably using. The
same works also for directives.
Each line in list has its own help
window which appears when user
points at it by the pointer. This
help window shows additional de-
tails regarding the exact instruc-
tion. Note also the “ Show leg-
end” button in the upper right corner of the panel.

3.4.4 Data register watches

Figure 3.15: Data register
watches

This panel might help you to keep track of specific
data registers, except for SFR and EEPROM.
User can add arbitrary data memory registers
which he or she consider to be the most impor-
tant for his or her current work. You can add
a register in the bottom part of the panel. And
you can search for specific register, configure the
panel and save or load the list of register in the
top panel.

This tool is capable of extraction of used sym-

26 CHAPTER 3. DETAILED INTRODUCTION TO GUI

bols from a code listing file8 generated by an as-
sembler. This feature can enabled or disabled in
the panel’s configuration menu. The current list

of watched registers can be saved into a file and loaded from a file9.
Memory segments are distinguished by format of the addresses. As you

can seen in the example, the meaning is this:

Address format Memory segment
1 or 2 digits Internal RAM (not SFR)
3 digits Expanded RAM
4 digits External RAM
dot and 2 digits Bit (including SFR area)

Table 3.2: Data register watches: Register address

3.4.5 Subprograms call monitor

Figure 3.16: Subprograms
call monitor

From here you can monitor all subprogram and
interrupt calls in your program. For each en-
try there is mentioned the type of call, acall,
lcall or interrupt, return address and address
from which the call was invoked. And you can
force each of them to premature return.

3.4.6 List of symbols

This tools shows a list of symbols defined in
source code of your program, works for both as-
sembly language and C language. The list is man-
aged automatically as the user edit the code and
is featured with search panel for easy navigation.
Types of symbols can be distinguished by their colors and icons. Colors of
particular symbols corresponds to the colors used in the source code editor
to highlight them.

3.4.7 HW plug-ins manager

This tool does just one thing, allows user to use plug-ins in MCU 8051 IDE.
Primary purpose of these plug-ins should be implementation of inter-operation

8File with .lst file name extension.
9These file usually have extension .wtc

3.5. OTHER TOOLS 27

Label
Constant
Macro
C variable
C function
Other

Table 3.3: Symbol colors and icons in default settings

with certain hardware tools, most probably MCU programmers. if you are
interested in writing these plug-ins, please refer to chapter 7.

3.5 Other tools

3.5.1 SFR map

A tabular overview of all available SFRs on your MCU. This tool has similar
graphical form as tables of SFR often used in 8051 manuals, but the most
important difference is that this one is connected to the simulator and is
capable of representing and modifying current values of SFRs in the MCU
simulator.

3.5.2 Map of bit addressable area

Figure 3.17: Map of the bit ad-
dressable area

This tool is a part of the simulator user
interface. It shows all bits in the bit ad-
dressable area of the simulated MCU. Each
square represents one bit, when simulator
is on, you can also change value of each one
of them by clicking on it. Labels and color
used here should be hopefully clear from

the legend at the bottom.

3.5.3 Stack monitor

Figure 3.18: Stack
monitor

This tool makes it possible to see entire MCU stack in
one view. You can also push any value you want onto the
stack or pop a value from it at any time. However this
particular tool does not allow for changing the values on
the tack in any other way than these.

Each line in the stack monitor represents one octet
in the stack, each octet is represented in four numerical

28 CHAPTER 3. DETAILED INTRODUCTION TO GUI

bases, hexadecimal, decimal, binary and octal and also as
a character according to ACII chart. Newly added values
are pushed on the top of the list. And their origins are
distinguished by background color of the address. These colors are explained
in the legend on bottom.

Note that button “Clear” doe not clear the stack but instead it clear only
the monitor! Buttons “POP” and “PUSH” are intended for manipulation
with the stack’s content.

3.5.4 Symbol viewer

Figure 3.19: Symbol viewer

Symbol viewer shows the table of symbols
defined in your program, it works only for
assembly language. The table content is
taken from code listing generated by assem-
bler. In the top part of the window you can
find search bar, and in the bottom part you
can specify filter criteria for what you want
to see in the table and specify sorting order
of the symbols displayed. Symbol in this
context are various constants and labels.

Figure 3.20: ASCII chart Figure 3.21: 8051 Instruction Table

3.5. OTHER TOOLS 29

3.5.5 ASCII chart

Colorful interactive ASCII chart, it may prove handy especially when you
are dealing with serial communication and this sort of things.

3.5.6 8051 Instruction Table

Colorful interactive 8051 instruction table, very much alike the ASCII chart.
But instead of ASCII code you can find there the complete table of 8051
instruction mnemonics, OP codes and related things.

3.5.7 8-segment editor

Figure 3.22: 8-segment editor

With this tool you can easily determine what
value you have to set on a port to display a digit
on a numerical LED display. In the left part of
the dialog window, you can find numerical val-
ues corresponding to the digit displayed in the
middle part. These values are represented for
both common cathode and anode and in three
numerical bases, hexadecimal, decimal and oc-
tal. Buttons on left side from entry boxes copies
value from adjacent entry box into clipboard.
In the right part of the window you can set what port pin is connected to
what LED segment.

3.5.8 Stopwatch

Stopwatch is a tool which can measure certain things in the simulated proces-
sor, such as number of instructions processed so far, number of microseconds
which would it take for a real processor to execute, number of breakpoints
met so far etc. User can also set it to stop the simulation when certain limit
in the measurement has been met or exceeded.

3.5.9 Scribble notepad

This is something like a small whiteboard, where you can draw of write your
notes. It is a little bit more free than conventional text editor. You can also
insert images, supported image formats are PNG and a few others. But don’t
rely on the scribble notepad to much, this tool has no save or load functions,
anything you draw or write there is just temporary and it will not recover
upon next start of the IDE.

30 CHAPTER 3. DETAILED INTRODUCTION TO GUI

3.5.10 Base converter

Figure 3.23: Base conver-
tor

When you are programming micro-controllers, you
might want to convert numbers between various nu-
meric bases. One could say that everyone dealing
with such things as micro-controllers would be able
to do these conversion without use of any tool. But
this doesn’t mean that such a tool can never be
useful. Values written in the entry boxes of the
base converter are saved when user leaved the IDE

and are recovered upon next start along with all opened base converter tool
windows.

3.5.11 RS-232 debugger

Figure 3.24: UART/RS-232 debugger

This tool is capable of transmitting
and receiving data to/from RS-232
port in your computer, today per-
sonal computers usually do not have
this type of port, but you can always
use something like a USB to RS-232
bridge.

I assume here that the reader is
familiar with the RS-232 communica-
tion protocol and related terms. This
tool acts as a DTE10.

On the diagram in the upper left
corner you can see current logical
level on each of RS-232 wires except for RxD and TxD. You can also set value
for wires DTR11 and RTS12 and trigger the break by button BREAK.

Right upper corner contains configuration controls, their functions should
be mostly obvious. Check-box “Enable reception” enables or disables writing
to hexadecimal editor “Received data”. Button “Close” closes the opened
physical port. And button “ ” refreshes the list of available physical ports.

In the bottom part you can see two hexadecimal editors: “Data to send”
and “Received data”. These are representations of data which we are dealing
with. By button “Receive here” you can set address in the hexadecimal editor

10Data Terminal Equipment, the other side is DCE (Data Circuit-terminating Equip-
ment).

11Data Terminal Ready
12Ready To Send

3.5. OTHER TOOLS 31

where the received data will be written. And by button “Send selected” you
can trigger transmission over the opened physical port, selected chunk of the
data will be send then. Button “Clear selected” are intended for removing
data from the hexadecimal editors editors.

3.5.12 Hexadecimal editors

Figure 3.25: MCU code memory editor

In this IDE there are several hex-
adecimal editors used for various
purposes. Each of these editors is
equipped with a string search tool
and address bars of the left and
top side. And in some cases with
file saving and loading capability,
numerical base switch, ASCII view
and a navigation bar at the bottom.
Editing is allowed only in overwrite
mode, copy and paste works as
usual, search dialog can be invoked
by pressing Ctrl+F and user can
switch between view (left and right)
by pressing Tab key. Non printable

characters in ASCII view are displayed in red color.

MCU code memory editor allows user to see and modify contents of
the CODE memory of the simulated micro-controller. Special feature of this
particular editor is that instruction OP code currently pointed by program
counter (PC) is highlighted with dark orange background along with the
instruction’s operands. And the same applies also for the previously executed
instruction but highlight color is light orange in this case.

MCU data/xdata/eeprom memory editor allows user to see and mod-
ify contents of the IDATA/XDATA/EEPROM memory of the simulated
micro-controller. Special features of this editors are that recently changed
octets are highlighted with light orange foreground color and octets currently
being written into the memory are highlighted with gray background color.

MCU eeprom write buffer editor allows to see and modify EEPROM
write buffer. Current EEPROM write offset is displayed as well.

32 CHAPTER 3. DETAILED INTRODUCTION TO GUI

Independent hexadecimal editor is universal hexadecimal editor with
maximum capacity of 64kB and support for Intel R©8 HEX file format. This
tool is completely independent from your project in the IDE. This too might
be particularly useful when you want to and possibly modify content of a
Intel R©8 hex file, but do not alter the simulated MCU.

3.5.13 Hibernation of simulated program

The IDE is capable of saving execution state of the simulated program into
a file and resuming the program from it anytime later. The file, usually
with extension .m5ihib, contains values of all data registers including SFR
in the simulated MCU along with other values determining MCU state as for
example list of active interrupts. The file is in XML format, human readable
and usually occupies a few tens of kilobytes.The file does not contain content
of the CODE memory, so it has to be available somewhere else in a separate
file.

3.5.14 Interrupt monitor

Interrupts monitor is a specialized tool intended for viewing and manipu-
lating with interrupts in simulated MCU. With interrupt monitor you can
invoke any interrupt you want at any time, force any interrupt at any time to
return, change interrupt priorities or disable or enable particular interrupts.
You can also see all interrupts synoptically in one window and alter values
of their configuration flags.

Figure 3.26: Interrupt monitor

3.5. OTHER TOOLS 33

3.5.15 Conversions between *.hex, *.bin and *.adf files

Sometimes it might prove helpful to have some tool to convert a binary file
to Intel R©8 Hex and vice versa. For this purpose MCU 8051 IDE is equipped
with a simple tool set for this purpose. In the “Main Menu” → “Utilities”
you can find these tools:

• HEX → BIN
Convert Intel R©8 Hex file to raw binary file
• BIN → HEX

Convert raw binary file to Intel R©8 Hex
• SIM → HEX

Convert simulator assembler debug file (.adf) to Intel R©8 Hex file
• SIM → BIN

Convert simulator assembler debug file (.adf) to raw binary file
• Normalize Hex

Read and rewrite the given Intel R©8 Hex file, so that all records satisfies
specified maximum length (can be set in the assembler configuration
dialog), all records are in incremental order and no records overlaps
with others.

3.5.16 Normalization of source code indentation

Uniformly intended code is always more aesthetically pleasing and more read-
able. When you don’t have the luxury of having such a code from the first
hand, perhaps you will find this feature helpful. This function is available
for assembly language and C language if program indent is installed on your
system. User can access this function from the “Main Menu” → “Tools” →
“Auto indent”.

A small example of the auto indent function in action

Original code:
abc DATA 7Fh

; Start at address 0x00
ORG 0h

label0:inc R0
inc @R0

cjne R0 , #abc ,label0
mov R0, #0h

sjmp label0
; End of assembly

END

Automatically intended code:
abc DATA 7Fh

; Start at address 0x00
ORG 0h

label0: inc R0
inc @R0
cjne R0, #abc, label0
mov R0, #0h
sjmp label0
; End of assembly
END

3.5.17 Change letter case

34 CHAPTER 3. DETAILED INTRODUCTION TO GUI

Figure 3.27: Change letter case
dialog

This tool can change letter casing to upper
or lower case of certain types tokens which
your source consists of of. For example you
can easily convert all instruction mnemonics
in the code to uppercase. It is intended for
users who strictly prefers one or another con-
vention of letter casing in assembly language.
You can invoke the tool from “Main Menu” →
“Tools” → “Change letter case”.

• Convert to uppercase
• Convert to lowercase
• Keep current case

3.5.18 User defined commands

Introduction This feature was added in order to enable for use of any aux-
iliary tools which might useful while working in this IDE. For instance, some
hardware tools or some sort of a source code management system like Git
or SVN. These custom commands are basically mere Bash scripts with some
kind of pseudo-variables available in it. These pseudo-variables are formed as
strings beginning with “%”. Before each script execution they are expanded
to values corresponding to their meaning. For instance “%filename” expands
to the name of the current file. Note that “%%” is expanded as single “%”.

Pseudo-variable Meaning
%URL The full URL of the current file
%URLS List of the URLs of all open documents
%directory Project directory
%filename The file name of the current document
%basename Same as %filename, but without extension
%mainfile Name of project main file
%line Number of the current line
%column Number of the current column
%selection The selected text in the current file
%text The full text of the current file

Table 3.4: List of pseudo-variables

Configuration There is specialized configuration dialog for these custom
commands.

3.6. CONFIGURATION DIALOGUES 35

Figure 3.28: Custom commands
configuration dialog

Execution After the script is executed suc-
cessfully or not, dialog showing the results
will appear upon completion of the script.
This dialog contains all textual output from
the script caught on standard output and
standard error output. If the script outputs
anything to the standard error output it is
considered unsuccessful.

3.5.19 Clean-up project folder

This tool can proof useful particularly when
your project directory gets “polluted” with
lots of unnecessary files, and you want to get
rid of them easily and first of all safely. It removes files with certain file
name extensions from the project folder. The list of removed files is then
written in results dialog. Available from “Main Menu” → “Tools” → “Clean
up project folder”.

3.5.20 File statistic

Display certain statistical information about the current source code file.
“Main Menu” → “File” → “File statistic”.

3.6 Configuration dialogues
Configuration dialogues are graphical tools for customization of this inte-
grated development environment. And they comprises of these components:

Figure 3.29: Editor
configuration dialog

Editor configuration In editor configuration dialog
user can change preferred editor from default built-in
editor to for example Vim or Emacs and modify config-
uration the built-in editor. Configurable are colors used
for syntax highlight, colors for text area background
and so on, font used by editor, indentation mode, auto-
save interval and others.

36 CHAPTER 3. DETAILED INTRODUCTION TO GUI

Compiler configuration Compiler configuration di-
alog allows user to configure behavior of the built-in
assembler, chose another assembler instead of this one.
Configure the preferred assembler and configure the C
compiler (SDCC). Compiler configuration is stored in
the project file (the file with .mcu8051ide extension).

So these setting are specific to the one specific MCU 8051 IDE project.
Currently supported external assemblers are these:

• ASEM-51 13

• ASL 14

• AS51 15

How to link multiple files when using C language:16

1. Write makefile,

2. set the IDE to use your makefile instead of calling the C compiler di-
rectly (Configuration -> Compiler configuration -> GNU make utility),

3. start compilation as usual.

Simulator configuration Simulator configuration dialog configures these:

1. How to treat indeterminable values in simulator engine

2. How many steps will be remembered during the simulation for later
backward steps.

3. What warning conditions will be ignored during the simulation

Right panel configuration Configures colors used in tools “Instruction
details” and “Register watches” in the right panel.

Main toolbar configuration Configures contents of main application tool
bar.

13A really useful assembler written by W.W. Heinz. You can find it at http://plit.
de/asem-51/home.htm

14Available at http://linux.maruhn.com/sec/asl.html
15Available at http://www.pjrc.com/tech/8051
16This feature is not yet supported on MS Windows.

http://plit.de/asem-51/home.htm
http://plit.de/asem-51/home.htm

3.6. CONFIGURATION DIALOGUES 37

Figure 3.30: Main toolbar

Custom commands configuration Configures user defined commands,
which are essentially Bash scripts. This feature is currently not available on
MS R©Windows R©OS.

Shortcuts configuration Configures key shortcuts used in the IDE.

Terminal emulator configuration Configures terminal emulator at the
bottom panel. This terminal emulator is embedded rxvt-unicode. User can
set foreground color and background color of the terminal emulator window
and the font. This feature is currently not available on MS R©Windows R©OS.

Figure 3.31: Global
configuration dialog

Global MCU 8051 IDE configuration Changes
settings like GUI language, size of fonts used in the
GUI, GUI widget style, whether splash screen should
be displayed each time when the IDE is started and so
on.

http://software.schmorp.de/pkg/rxvt-unicode.html

38 CHAPTER 3. DETAILED INTRODUCTION TO GUI

39

Chapter 4

Build-in macro-assembler

In this chapter we will be concerned with MCU 8051 IDE build-in assembler.
1 With syntax of its statements, directives and 8051 assembler instructions. I
assume that the reader is familiar with general concepts of assembly language
programming and 8051 architecture. So I will not explain these here.

4.1 Statements
Source code files for this assembler must be text files where lines are formed
like these:

[label:] [instruction [operand [, operand [, operand]]] [;comment]
[label:] directive [argument] [;comment]
symbol directive argument [;comment]

Everything in square brackets is optional. Compilation does not go be-
yond line containing “end” directive, so after that directive the code do not
have to be syntactically valid. Empty lines are allowed as well as line contain-
ing only comment or label. Statements can be separated by spaces, NBSP
characters2 and tabs. Statements are case insensitive and their length is not
limited, overall line length is also not limited.

4.2 Symbols
Symbol names for numbers, macros or addresses defined by user in the code
using appropriate directive. Like with “equ” directive you can define a new

1This assembler manual is inspired by ASEM-51 manual, a great work done by W.W.
Heinz

2No Breaking Space (0xC2)

40 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

Code 2 An example of well formed assembly language code
start: ; Start timer 0 in mode 2

mov R5, #0h
mov IE, #0FFh
mov TL0, #255d
mov TMOD, #03h
setb TR0
sjmp main

; Main loop
main: sjmp $; Inifinite loop

; Program end
end

symbol and assign a value to it right away. Symbols may consist of upper
and lower case letter, digits and underscore character (“_”), their length is
not limited, they are case insensitive and they can be the same as language
keywords. Be aware of that there cannot coexists two or more symbols in
the same memory segment which differs only by letter casing, in other words
symbols “abc” and “ABC” are completely the same thing.

4.3 Constants
There are two types of constants numeric constants and character constants.
Numeric constants consist of a sequence of digits allowed for the numeric
base used and followed by the radix specifier. If the number begins with a
letter, there must be the zero digit placed before the number. For example
“abh” is not valid numeric constant, but “0abh” is. Character constants con-
sist of sequence of one or more characters enclosed by quote character (’).
C escape sequences can be used in character constants. If you want to place
quote character (’) into the constant, you can either place two quotes instead
of one (“’’’’”) or escape the quote, that means place backslash “

” before it. There is significant difference between single character constant
and multiple character one. Single character constant is regarded by assem-
bler as 8 bin integer number and multiple character constant is a string, a
sequence of characters. Since version 1.4.1 it is possible to use prefix “0x”
(and “0X”) as radix specifier for hexadecimal numbers, so “0xaf” is the same
as “0afh”, etc.

4.4. EXPRESSIONS 41

Constant type Allowed digits Radix specifier
Binary 0 .. 1 B
Octal 0 .. 7 O or Q
Decimal 0 .. 9 D or none
Hexadecimal 0 .. 9, A .. F H

Table 4.1: Radix specifiers

Code 3 An example of constants
; These are the same number
a set 100111b ; Binary
a set 47q ; Octal
a set 39d ; Decimal
a set 27h ; Hexadecimal
a set ’’’’ ; Character

; This is an example of string
db ’string’ ; String

4.4 Expressions
Arithmetical expressions are evaluated at compilation time and replaced by
assembler with constant corresponding the their resulting value. Expressions
comprises of arithmetical operators, constants, symbols and another expres-
sions. An example of such expression might be (X XOR 0FF00H)

Operator Description Example
Unary Operators
NOT one’s complement NOT 0a55ah
HIGH high order byte HIGH 0a55ah
LOW low order byte LOW 0a55ah
Binary Operators
+ unsigned addition 11 + 12
- unsigned subtraction 13 + 11
* unsigned multiplication 3 * 5
/ unsigned division 20 / 4
MOD unsigned remainder 21 MOD 4
SHL logical shift left 32 SHL 2
SHR logical shift right 32 SHR 2
AND logical and 48 AND 16
OR logical or 370q OR 7
XOR exclusive or 00fh XOR 005h
. bit operator P1.4
EQ, = equal to 11 EQ 11
NE, <> not equal to 11 NE 11
LT, < less than 11 LT 12
LE, <= less or equal than 11 LT 11
GT, > greater than 12 GT 11
GE, >= greater or equal than 12 GT 11

Table 4.2: Expression operators

42 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

Code 4 An example of expressions
abc EQU (2000 * 3 / 100)
xyz SET (LOW abc)
IF (abc > (5 MOD 2))

MOV A, # ((15h XOR 12) OR xyz)
ELSE

ADDC A, # (HIGH 1234h)
ENDIF

4.5 The instruction set processing
This assembler is capable of translating all 8051 instructions with all possible
sets of operands. And extends this set with 2 pseudo-instructions: “CALL”
and “JMP” which do not stand for any operation code, but are translated
according to the used operand. “CALL” can be translated as “ACALL” or
“LCALL”, “JMP addr” can be translated as “SJMP”, “AJMP” or “LJMP”.

4.6. ASSEMBLER DIRECTIVES 43

4.6 Assembler directives
ifn IF Not, conditional assembly

Syntax:
IFN <expr>

Example:
IF(2 * 4 - CND)

MOV A, #20h
ELSE

MOV A, #40h
ENDIF

ifdef IF DEFined
Syntax:

IFDEF <symbol>

Example:
IFDEF CND

MOV A, #20h
ELSE

MOV A, #40h
ENDIF

ifndef IF Not DEFined
Syntax:

IFNDEF <symbol>
Example:

IFNDEF CND
MOV A, #20h

ELSE
MOV A, #40h

ENDIF

rept REPeaT Macro
Syntax:

REPT <expr>

Example:
REPT 5

NOP
ENDM

times REPeaT Macro
Syntax:

TIMES <expr>

Example:
TIMES 5

NOP

ENDM

if Conditional assembly
Syntax:

IF <expr>

Example:
IF(2 * 4 - CND)

MOV A, #20h
ELSE

MOV A, #40h
ENDIF

else Conditional assembly
Syntax:

ELSE
Example:

IF(2 * 4 - CND)
MOV A, #20h

ELSE
MOV A, #40h

ENDIF

elseif Conditional assembly
Syntax:

ELSEIF <expr>
Example:

IF(2 * 4 - CND)
MOV A, #20h

ELSEIF SOMETHING_ELSE
MOV A, #40h

ENDIF

elseifn Conditional assembly
Syntax:

ELSEIF <expr>
Example:

IF(2 * 4 - CND)
MOV A, #20h

ELSEIF SOMETHING_ELSE
MOV A, #40h

ENDIF

elseifdef Conditional assembly
Syntax:

ELSEIF <expr>
Example:

IF(2 * 4 - CND)
MOV A, #20h

44 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

ELSEIFDEF SOMETHING_ELSE
MOV A, #40h

ENDIF

elseifndef Conditional assembly
Syntax:

ELSEIF <expr>
Example:

IF(2 * 4 - CND)
MOV A, #20h

ELSEIFNDEF SOMETHING_ELSE
MOV A, #40h

ENDIF

endif Conditional assembly
Syntax:

ENDIF

Example:
IF(2 * 4 - CND)

MOV A, #20h
ELSE

MOV A, #40h
ENDIF

endm END of Macro definition
Syntax:

ENDM

Example:
ABC MACRO

MOV B, #12d
ENDM

end END of the program
Syntax:

END

Example:
END

list enable code LISTing
Syntax:

LIST

Example:
NOP
NOLIST
NOP

NOP
LIST
NOP

nolist disabled code listing
Syntax:

NOLIST

Example:
NOP
NOLIST
NOP
NOP
LIST
NOP

dseg switch to DATA segment [at address]
Syntax:

DSEG [AT <expr>]

Example:
DSEG at 20d

iseg switch to IDATA segment [at address]
Syntax:

ISEG [AT <expr>]

Example:
ISEG at 10d

bseg switch to BIT segment [at address]
Syntax:

BSEG [AT <expr>]

Example:
BSEG at 5d

xseg switch to XDATA segment [at address]
Syntax:

XSEG [AT <expr>]

Example:
XSEG at 30d

cseg switch to CODE segment [at address]
Syntax:

CSEG [AT <expr>]

4.6. ASSEMBLER DIRECTIVES 45

Example:
CSEG at 40d

flag define a FLAG bit
Syntax:

<symbol> FLAG <expr>

Example:
F4 FLAG 16h

Note:
Deprecated directive. Consider directive BIT instead.}

skip SKIP bytes in the code memory
Syntax:

SKIP <expr>

Example:
SKIP 5

equ EQUivalent
Syntax:

<symbol> EQU <expr>

Example:
ABC EQU R0
XYZ EQU 4Eh+12

bit define BIT address
Syntax:

<symbol> BIT <expr>

Example:
ABC BIT P4.5

set SET numeric variable or variable register
Syntax:

<symbol> SET <expr>
<symbol> SET <register>

Example:
ALPHA SET R0
ALPHA SET 42*BETA

code define address in the CODE memory
Syntax:

<symbol> CODE <expr>

Example:
TBL CODE 600h

data define address in the DATA memory
Syntax:

<symbol> DATA <expr>
Example:

UIV DATA 20h

idata define address in the Internal DATA mem-
ory
Syntax:

<symbol> IDATA <expr>
Example:

UIV IDATA 20h

xdata define address in the External DATA mem-
ory
Syntax:

<symbol> XDATA <expr>
Example:

UIV XDATA 400h

macro MACRO definition
Syntax:

<macro> MACRO [<arg0> [,<arg1> ...]
Example:

ABC MACRO X
MOV X, #12d

ENDM

local define a LOCAL label inside a macro
Syntax:

LOCAL <label>

Example:
ABC MACRO X

LOCAL xyz
xyz: MOV X, #12d

ENDM

ds Define Space
Syntax:

DS <expr>
Example:

46 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

DS 2+4

dw Define Words
Syntax:

DW <expr1> [,<expr2> ...]
Example:

DW 0,02009H,2009,4171

db Define Bytes
Syntax:

DB <expr1> [,<expr2> ...]
Example:

DB 24,’August’,09,(2*8+24)/8

dbit Define BITs
Syntax:

DBIT <expr>
Example:

DBIT 4+2

include INCLUDE an external source code
Syntax:

INCLUDE <filename>
Example:

INCLUDE ’my file.asm’

org ORiGin of segment location
Syntax:

ORG <expr>
Example:

ORG 0Bh

using USING register banks
Syntax:

USING <expr>
Example:

USING 2

byte define BYTE address in the data memory
Syntax:

<symbol> BYTE <expr>
Example:

UIV BYTE 20h
Note:

Deprecated directive. Consider directive DATA instead.

4.7. ASSEMBLER CONTROLS 47

4.7 Assembler Controls
$date Inserts date string into page header

Syntax:
$DATE(string)

Example:
$DATE(1965-12-31)

$da Inserts date string into page header
Syntax:

$DA(string)
Example:

$DA(1965-12-31)

$eject Start a new page in list file
Syntax:

$EJECT
Example:

$EJECT

$ej Start a new page in list file
Syntax:

$EJ
Example:

$EJ

$include Include a source file
Syntax:

$INCLUDE(string)
Example:

$INCLUDE(somefile.asm)

$inc Include a source file
Syntax:

$INC(string)
Example:

$INC(somefile.asm)

$list List subsequent source lines
Syntax:

$LIST
Example:

$LIST

$li List subsequent source lines
Syntax:

$LI
Example:

$LI

$noli Don’t list subsequent source lines
Syntax:

$NOLI
Example:

$NOLI

$nolist Don’t list subsequent source lines
Syntax:

$NOLIST
Example:

$NOLIST

$nomod Disable predefined SFR symbols
Syntax:

$NOMOD
Example:

$NOMOD

$nomo Disable predefined SFR symbols
Syntax:

$NOMO
Example:

$NOMO

$nomod51 Disable predefined SFR symbols
Syntax:

$NOMOD51
Example:

$NOMOD51

$paging Enable listing page formatting
Syntax:

$PAGING
Example:

$PAGING

$pi Enable listing page formatting
Syntax:

$PI
Example:

$PI

$nopi Disable listing page formatting
Syntax:

$NOPI
Example:

$NOPI

$nopaging Disable listing page formatting
Syntax:

$NOPAGING

48 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

Example:
$NOPAGING

$pagelength Set lines per page for listing
Syntax:

$PAGELENGTH(int)
Example:

$PAGELENGTH(64)

$pl Set lines per page for listing
Syntax:

$PL(int)
Example:

$PL(64)

$pagewidth Set columns per line for listing
Syntax:

$PAGEWIDTH(int)
Example:

$PAGEWIDTH(132)

$pw Set columns per line for listing
Syntax:

$PW(int)
Example:

$PW(132)

$symbols Create symbol table
Syntax:

$SYMBOLS
Example:

$SYMBOLS

$sb Create symbol table
Syntax:

$SB
Example:

$SB

$nosymbols Don’t create symbol table
Syntax:

$NOSYMBOLS
Example:

$NOSYMBOLS

$nosb Don’t create symbol table
Syntax:

$NOSB
Example:

$NOSB

$title Inserts title string into page header
Syntax:

$TITLE(string)
Example:

$TITLE(My firts code)

$tt Inserts title string into page header
Syntax:

$TT(string)
Example:

$TT(My firts code)

$noobject Do not create Intel HEX file
Syntax:

$NOOBJECT
Example:

$NOOBJECT

$object Specify file name for Intel HEX
Syntax:

$OBJECT(string)
Example:

$OBJECT(my_hex.hex)

$print Specify file name for list file
Syntax:

$PRINT(string)
Example:

$PRINT(my_list.lst)

$noprint Do not create list file at all
Syntax:

$NOPRINT
Example:

$NOPRINT

$nomacrosfirst Define and expand macro instruc-
tions after! conditional assembly and defi-
nitions of constants
Syntax:

$NOMACROSFIRST
Example:

$NOMACROSFIRST

4.8. PREDEFINED SYMBOLS 49

4.8 Predefined Symbols
There are symbols which are defined by default by assembler. The aim is to
make it a little easier to write code in assembly language for 8051, because
user don not have to define all these symbols in his or her code. This feature
can be turned of by “$NOMOD” control sequence.

Table 4.3: Code addresses

Symbol Value Symbol Value Symbol Value Symbol Value
RESET 000h EXTI0 003h TIMER0 00Bh EXTI1 013h
TIMER1 01Bh SINT 023h TIMER2 02Bh CFINT 033h

Table 4.4: Plain numbers, these symbols are always defined!

Symbol Value
??MCU_8051_IDE 8051h
??VERSION 0139h 3

Table 4.5: Predefined SFR bit addresses

Symbol Value Symbol Value Symbol Value Symbol Value
IT0 088h IE0 089h IT1 08Ah IE1 08Bh
TR0 08Ch TF0 08Dh TR1 08Eh TF1 08Fh
RI 098h TI 099h RB8 09Ah TB8 09Bh
REN 09Ch SM2 09Dh SM1 09Eh SM0 09Fh
FE 09Fh
EX0 0A8h ET0 0A9h EX1 0AAh ET1 0ABh
ES 0ACh ET2 0ADh EC 0AEh EA 0AFh
RXD 0B0h TXD 0B1h INT0 0B2h INT1 0B3h
T0 0B4h T1 0B5h WR 0B6h RD 0B7h
PX0 0B8h PT0 0B9h PX1 0BAh PT1 0BBh
PS 0BCh PT2 0BDh PC 0BEh
PPCL 0BEh PT2L 0BDh PSL 0BCh
PT1L 0BBh PX1L 0BAh PT0L 0B9h PX0L 0B8h
TF2 0CFh EXF2 0CEh RCLK 0CDh TCLK 0CCh
EXEN2 0CBh TR2 0CAh CT2 0C9h CPRL2 0C8h
P 0D0h OV 0D2h RS0 0D3h
RS1 0D4h F0 0D5h AC 0D6h CY 0D7h
CR 0DEh CCF4 0DCh
CCF3 0DBh CCF2 0DAh CCF1 0D9h CCF0 0D8h

50 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

Table 4.6: Predefined SFR addresses

Symbol Value Symbol Value Symbol Value Symbol Value
P0 080h SP 081h DPL 082h DPH 083h
PCON 087h TCON 088h TMOD 089h TL0 08Ah
TL1 08Bh TH0 08Ch TH1 08Dh P1 090h
SCON 098h SBUF 099h P2 0A0h IE 0A8h
P3 0B0h IP 0B8h PSW 0D0h ACC 0E0h
B 0F0h P4 0C0h WDTCON 0A7h EECON 096h
DP0H 083h DP0L 082h DP1H 085h DP1L 084h
T2CON 0C8h T2MOD 0C9h RCAP2L 0CAh RCAP2H 0CBh
TL2 0CCh TH2 0CDh AUXR1 0A2h WDTRST 0A6h
CLKREG 08Fh ACSR 097h IPH 0B7h SADDR 0A9h
SADEN 0B9h SPCR 0D5h SPSR 0AAh SPDR 086h
AUXR 08Eh CKCON 08Fh WDTPRG 0A7h
CH 0F9h CCAP0H 0FAh CCAP1H 0FBh CCAP2H 0FCh
CCAP3H 0FDh CCAP4H 0FEh CCAPL2H 0FCh CCAPL3H 0FDh
CCAPL4H 0FEh ADCLK 0F2h ADCON 0F3h ADDL 0F4h
ADDH 0F5h ADCF 0F6h P5 0E8h CL 0E9h
CCAP0L 0EAh CCAP1L 0EBh CCAPL2L 0ECh CCAPL3L 0EDh
CCAPL4L 0EEh CCON 0D8h CMOD 0D9h CCAPM0 0DAh
CCAPM1 0DBh CCAPM2 0DCh CCAPM3 0DDh CCAPM4 0DEh
P1M2 0E2h P3M2 0E3h P4M2 0E4h P1M1 0D4h
P3M1 0D5h P4M1 0D6h SPCON 0C3h SPSTA 0C4h
SPDAT 0C5h IPL0 0B8h IPL1 0B2h IPH1 0B3h
IPH0 0B7h BRL 09Ah BDRCON 09Bh BDRCON_1 09Ch
KBLS 09Ch KBE 09Dh KBF 09Eh SADEN_0 0B9h
SADEN_1 0BAh SADDR_0 0A9h SADDR_1 0AAh CKSEL 085h
OSCCON 086h CKRL 097h CKCON0 08Fh

4.9. SEGMENT TYPE 51

4.9 Segment type
Segment type specifies the address space to which a symbol is assigned. For
example if you define symbol ABC using “XDATA” directive, then ABS is
assigned to XDATA segment. Purpose of this is to semantically distinguish
between different types of symbols. For example if we use a symbol as address
to program memory it has different meaning that if we used it as address to
bit addressable area.

DATA Internal data memory and SFR
IDATA Internal data memory only
XDATA External data memory only
BIT Bit addressable area only
CODE Program memory only
NUMBER Arbitrary value

Table 4.7: Segment types

Symbols might be assigned to these segment types by these directives:

• DATA (segment DATA)
• IDATA (segment IDATA)
• XDATA (segment XDATA)
• BIT (segment BIT)
• CODE (segment CODE)
• EQU, SET (segment NUMBER)

Code 5 Example of symbol definitions
MY_A DATA ’\n’ ; DATA segment (internal data memory and SFR)
MY_B IDATA 0AAH ; IDATA segment (internal data memory only)
MY_C XDATA 14Q ; XDATA segment (external data memory only)
MY_D BIT P1.2 ; BIT segment (bit addressable area only)
MY_E CODE 62348D ; CODE segment (program memory only)
MY_F EQU 242Q ; Segment NUMBER (arbitrary value)

; Segment NUMBER (arbitrary value)
MY_G SET MY_A + MY_B + MY_C + MY_D + MY_E + MY_F

52 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

Code 6 Example of address space reservation
; CODE segment

cseg at 40h ; Start this segment at address 40 hexadecimal (64d)
my_c CODE 00abch ; Define an address in code memory
word: DW 01234h ; Define a word in code memory, will be written to code memory
my_cs: DB ’abcdef’; Define a string in code memory, will be written to code memory

; DATA segment
dseg at 10q ; Start this segment at address 10 octal (8d)

my_d DATA ’d’ ; Define address in internal data memory or SFR area
my_ds: DS 4 ; Reserve 4 bytes here and set ‘‘my_ds’’ to point there

; IDATA segment
iseg at 10d ; Start this segment at address 10 decimal

my_i IDATA ’i’ ; Define address in internal data memory
my_is: DS 4 ; Reserve 4 bytes here and set ‘‘my_is’’ to point there

; BIT segment
bseg at 10b ; Start this segment at address 10 binary (2d)

my_bit BIT ’b’ ; Define address in bit addressable area
my_bs: dbit 4 ; Reserve 4 bits here and set ‘‘my_bs’’ to point there

; XDATA segment
xseg at 10 ; Start this segment at address 10 decimal

my_x XDATA ’x’ ; Define address in external data memory
my_xs: DS 4 ; Reserve 4 bytes here and set ‘‘my_xs’’ to point there

address equ 0h ; Define symbol ‘‘address’ in the NUMBER segment

org address ; Start writing program code at address defined by symbol ‘‘address’’

; Clear 1st bit in BIT array ‘‘my_bs’’
clr my_bs+1

; Move 10d to 2nd byte in DATA array ‘‘my_ds’’
mov my_ds+2, #10d

; Move 88d to 3rd byte in IDATA array ‘‘my_is’’
mov my_is+3, #88d

; Move 55h to 0th byte in XDATA array ‘‘my_xs’’
mov A, #55h
mov DPTR, #(my_xs + 0)
movx @DPTR, A

; Read 1st byte from CODE array ‘‘my_cs’’
mov DPTR, #my_cs
mov A, #1
movc A, @A+DPTR

sjmp $; Infinite loop (‘‘$’’ stands for address of current instruction)

end ; End of assembly, everything after this directive is ignored

4.10. CONDITIONAL ASSEMBLY 53

4.10 Conditional Assembly
The aim of conditional assembly to to assemble certain parts of the code if
and only if certain arithmetically expressed condition is met. This feature
can prove useful particularly when the user want to make the code some-
how “configurable”. This assembler provides these instructions to work with
conditional assembly:

• IF <condition>
• IFN <condition>
• IFDEF <symbol>
• IFNDEF <symbol>
• ELSE
• ELSEIF <condition>
• ELSEIFN <condition>
• ELSEIFDEF <symbol>
• ELSEIFNDEF <symbol>
• ENDIF

This can be best demonstrated on an example:

Code 7 An example of conditional assembly usage
abc equ 16 ; Assign number 14 to symbol abc
xyz equ 10 ; Assign number 10 to symbol abc

ifdef abc ;<--+ Assemble only if symbol abc has been defined
if (abc = 13) ; | <--+ Assemble if 13 has been assigned to symbol abc

mov a, #01010101b ; | |
elseif (abc = 14) ; | <--+ Assemble if 14 has been assigned to symbol abc

mov a, #0aah ; | |
elseifn (abc % 2) ; | <--+ Assemble if the value assigned to symbol abc is even

mov a, #abc ; | |
else ; | <--+ Else ..

mov a, #377q ; | |
endif ; | <--+

elseifndef xyz ;<--+ Assemble if symbol xyz has NOT been defined
clr A ; |

else ;<--+ Else ...
ifn (xyz mod 2) ; | <--+ Assemble if (yxz modulo 2) is 0

mov a, #128d ; | |
endif ; | <--+

endif ;<--+

sjmp $; Infinite loop
end ; End of assembly

54 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

4.11 Macro Processing
Macro is a sequence of instructions which can be expanded anywhere in the
code and for any number of times. That may reduce necessity of repeating
code fragments as well as source code size and make the solved task easier
to comprehend and solve. Unlike subprograms macros do not add extra
run-time overhead and repeating usage of macros may significantly increase
size of the resulting machine code. Macros supported by this assembler are
divided to named and unnamed ones.

MACRO Define a new named macro
REPT Define a new unnamed macro and expand it right away for the specified number of times
TIMES Exactly the same as “REPT”
ENDM End of macro definition

Table 4.8: Directives directly related to macros

This can be well demonstrated on examples:

Code 8 An exaple of REPT directive
rept 3 ; Repeat the code 3 times

mov a, p0
cpl a
mov p1, a

endm

; This is the same as if you wrote this:
mov a, p0
cpl a
mov p1, a
mov a, p0
cpl a
mov p1, a
mov a, p0
cpl a
mov p1, a

4.11. MACRO PROCESSING 55

Code 9 An exaple of simple named macro
abc macro ; Define named macro ‘‘abc’’

mov a, p0
cpl a
mov p1, a

endm

abc ; Expand macro ‘‘abc’’ here
abc ; Expand macro ‘‘abc’’ here

; This is the same as if you wrote this:
mov a, p0
cpl a
mov p1, a
mov a, p0
cpl a
mov p1, a

Code 10 An exaple of named macro with two parameters
; Define macro named as ‘‘xyz’’ with 2 mandatory parameters
xyz macro foo, bar

mov foo, #10h
cpl bar

endm

xyz a, c ; Expand macro ‘‘xyz’’ here
xyz p0, p1.0 ; Expand macro ‘‘xyz’’ here

; This is the same as if you wrote this:
; xyz a, c
mov a, #10h
cpl c
; xyz p0, p1.0
mov p0, #10h
cpl p1.0

56 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

Code 11 An exaple of named macro used with if statement
ijk macro foo

add A, @R0

if foo = 4d
nop

endif

subb A, #foo
endm

ijk 5
ijk 4

; This is the same as if you wrote this:
; ijk 5
add A, @R0
if 5 = 4d
nop
endif
subb A, #5
; ijk 4
add A, @R0
if 4 = 4d
nop
endif
subb A, #4

4.11. MACRO PROCESSING 57

Code 12 An exaple of nested macros
; Suppose we have these macros:
abc macro

mov a, p0
cpl a
mov p1, a

endm
ijk macro foo

add A, @R0

if foo = 4d
nop

endif

subb A, #foo
endm
xyz macro foo, bar

ijk foo
ijk bar

abc
endm

; And we expand ‘‘xyz’’ like this:
xyz 4, 5

; Then we get this result:
; ijk 4
add A, @R0
nop ; <-- Note this
subb A, #4
; ijk 5
add A, @R0
subb A, #5
; abc
mov a, p0
cpl a
mov p1, a

Code 13 An exaple of nested macros, which will not work
abc macro

; Unnamed macro cannot be contained inside a named one
times 2

mov a, p0
cpl a
mov p1, a

endm
endm

58 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

4.12 Reserved keywords

Table 4.9: Special instruction operands

$ Location counter
A Accumulator
AB A/B register pair
C Carry flag (in PSW register)
DPTR Data pointer
PC Program counter
R0..R7 Registers

Table 4.10: Instruction mnemonics

ACALL ADD ADDC AJMP ANL CJNE CLR CPL DA
DEC DIV DJNZ INC JB JBC JC JMP JNB
JNZ SJMP JNC CALL JZ LCALL LJMP MOV MOVC
MOVX MUL NOP ORL POP PUSH RET RETI RL
RLC RR RRC SETB SUBB SWAP XCH XCHD XRL

Table 4.11: Directives

BIT BSEG BYTE CODE CSEG
DATA DB DBIT DS DSEG
DW ELSE ELSEIF ELSEIFDEF ELSEIFN
ELSEIFNDEF END ENDIF ENDM EQU
FLAG IDATA IF IFDEF IFN
IFNDEF INCLUDE ISEG LIST MACRO
NAME NOLIST ORG REPT SET
SKIP TIMES USING XDATA XSEG

Table 4.12: Expression operators

AND EQ GE GT HIGH
LE LOW LT MOD NE
NOT OR SHL SHR XOR

Table 4.13: Assembler controls

DA DATE EJ EJECT
LI LIST NOLI NOLIST
NOMACROSFIRST NOMO NOMOD NOMOD51
NOOBJECT NOPAGING NOPI NOPRINT
NOSB NOSYMBOLS OBJECT PAGELENGTH
PAGEWIDTH PAGING PI PL
PRINT PW SB SYMBOLS
TITLE TT

4.13. COMPATIBILITY WITH ASEM-51 59

4.13 Compatibility with ASEM-51
Not yet specified.

60 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

4.14 List File Format
Code listing serves as an additional information about the assembled code
and the progress of the assembly process. It contains information about all
symbols defined in the code. Where and how were they were defined, what
are their values and whether they were used in the code. Also detailed infor-
mation about all macros defined in the code and/or expanded in the code.
Conditional compilation configuration, instruction OP codes, address space
reservations, inclusion of code from another files. And all warnings, errors
and notes generated during the assembly by the assembler. There are assem-
bler control sequences which alters formatting of the code listing file. These
control sequences will be discussed here. Format of code listing generated
by this assembler is very similar to the one generated Metalink R©ASM51.
Code listing contains entire source code which was assembled but with each

Code 14 A simple code listing
demo0 PAGE 1

1 ; MCU 8051 IDE - Demostration code
2 ; Very simple code
3
4 ; Press F2 and F6 to run the program (start simulator and animate)
5
6 org 0h
7

0000 08 8 main: inc R0
0001 06 9 inc @R0
0002 B87FFB 10 cjne R0, #07Fh, main
0005 7800 11 mov R0, #0d
0007 80F7 12 sjmp main

13
14 end

ASSEMBLY COMPLETE, NO ERRORS FOUND, NO WARNINGS

line prefixed with line number and some additional information which will
be explained later. Besides the original code there is also table of symbols
defined during the assembly unless it was turned off. Code listing is divided
into pages separated by form feed character, this behavior may be altered by
certain assembler control sequences as well as page height and width.

Each line of code listing which contains original source code line may
contain beside line number also some additional information regarding the
compilation of the given line of code. Such a additional information might
look like this and is composed of these parts:

Control sequences affecting format of the generated code listing.

4.14. LIST FILE FORMAT 61

Code 15 Explanation code listing format
0055 18 X data 55h

0014 1122 =1 33 l: inc A
35 +1 abc ; Expand macro “abc” here

001E E580 36 +1 mov a, p0
0020 F4 37 +1 cpl a
0021 F590 38 +1 mov p1, a

X Line number
X Level of file inclusion
X Level of macro expansion
X Address in code memory
X Machine code or another value to be stored in the code memory
X Value of a symbol
X Original line

Table 4.14: Control sequences affecting code listing

$eject $ej $nolist $noli
$list $li $paging $pi
$nopaging $nopi $pagewidth $pw
$pagelength $pl $title $tt
$date $da $nosb $nosymbols
$noprint $symbols $sb $print

Code 16 A more complicated example of code listing
complicated_lst PAGE 1
001C 1 abc equ (14 * 2) ; Define symbol abc

2 org 0 ; Start writing code at address 0
3

=1 4 include ’my_macros.asm’ ; Include file my_macros.asm
=1 5 ; This is the beginning of file my_macros.asm
=1 6 my_cpl macro foo
=1 7 mov A, foo
=1 8 cpl A
=1 9 mov foo, A
=1 10 endm
=1 11 ; This is the end of file my_macros.asm

12
13 +1 main: my_cpl P0 ; Expand macro my_cpl here

0000 E580 14 +1 mov a, p0
0002 F4 15 +1 cpl a
0003 F580 16 +1 mov p0, a
0005 80F9 17 sjmp main ; Jump back to label main

18 end ; End of assembly
ASSEMBLY COMPLETE, NO ERRORS FOUND, NO WARNINGS

62 CHAPTER 4. BUILD-IN MACRO-ASSEMBLER

4.15 Specification of Intel R©8 HEX Format
Intel R©8 HEX is a popular object file format capable of containing up to 64kB
of data. Hex files have usually extension .hex or .ihx. These files are text
files consisting of a sequence of records, each line line can contain at most
one record. Records starts with “:” (colon) character at the beginning of the
line and ends by end of the line. Everything else besides records should be
ignored. Records consist of a sequence of 8-bit hexadecimal numbers (e.g.
“a2” or “8c”). These numbers are divided into “fields” with different meaning,
see the example below.

Code 17 An example of an Intel R©8 hex code
: 0F 0000 00 E580F4F590E580F4F590E580F4F590 57
: 0F 000F 00 E580F4F590E580F4F590E580F4F590 48
: 0F 001E 00 E580F4F590E580F4F590E580F4F590 39
: 10 002D 00 E580F4F5907410B3758010B2907410B3 30
: 10 003D 00 758010B2902694052600940426940526 0A
: 10 004D 00 00940426009404269405E580F4F59026 8A
: 0B 005D 00 009404269405E580F4F590 63
: 00 0000 01 FF

X Start code
X Byte count
X Address
X Record type
X Data
X Checksum (two’s complement of 8-bit sum of entire record, except for
the start code and the checksum itself)

Record types available in Intel R©8 HEX

00 Data record

01 End of file record

63

Chapter 5

Disassembler

Disassembler is a tool intended to generate assembly language code from
an object file. In other words it has certain level of capability of reversing
the assembly process and regaining the original source code from any object
code. But there are some restriction to that capability and the whole thing
is not so simple after all. So let’s discuss disassembly process deeper. In
MCU 8051 IDE you can invoke disassembler from the main menu “Main
Menu” → “Tools” → “Disassemble”.

A simple example of a code generated by disassembler

Original code:
org 0h ; Start at address 0x00

main: inc R0 ; Increment R0
inc @R0
cjne R0, #07Fh, main
mov R0, #0d ;
sjmp main ; Jump back to label main

end ; End of assembly

Code generated by disassembler
ORG 0h

label0: inc R0
inc @R0
cjne R0, #7Fh, label0
mov R0, #0h
sjmp label0

END

As you can see from the example above, the code generated by disassem-
bler is the same as the original code. But of course original symbol names
have vanished as well as comments, indentation and other tiny details which
cannot be determined from the object code. This is caused by the simple fact
that the object code contains only the machine code. It contains no infor-
mation regarding how exactly the original code looked like. Just instructions
with their operands and data directly written to the code memory by “DB”
and “DW” directives. And here we are getting to the real problem which
emerges every time when you try to disassemble “not exactly a simple” code.

8051 instructions comprises of 1, 2 or 3 bytes, the first byte determinates
what instruction are we dealing with and so what is its length in bytes. But

64 CHAPTER 5. DISASSEMBLER

if the original code contained directives “DB” or “DW” then the disassembler
“thinks” that these values are instructions too. If the disassembler consider
a arbitrary value given by “DB” or “DW” instruction to be an instruction, it
determinates its length according to its OP code (the 1st argument to the di-
rective). And so it takes 0, 1 or 2 bytes next and interprets them as operands
to that instruction. Then when it encounters a real instruction OP code it
might think of it as another operand to something and so misinterpret it.
Then you might end up with a code that is completely different from the
original code and makes no sense at all to human. But if you reassemble
such a “non sense” code with disabled peep hole optimization you must get
the original object code back, and its functionality must not be changed.
Even if the code seems to be absolutely non sense. In that case I strongly
recommend to use another disassembler than is the built-in one. Consider for
example D52 http://www.8052.com/users/disasm/. The built-in diassem-
bler is provided just for “completeness”, but its suitability for a real reverse
engineering is highly questionable.

A simple example of a BADLY generated code by disassembler

Original code:
org 0h ; Start at address 0x00

main: inc R0 ; Increment R0
inc @R0
jmp cont
db ’some stringx’

cont: cjne R0, #07Fh, main
mov R0, #0d ;
sjmp main ; Jump back to label main

end ; End of assembly

Code generated by disassembler
label0 CODE 11h

ORG 0h
label1: inc R0

inc @R0
ljmp label0
jmp @A+DPTR
xrl A, R7
xrl A, R5
xrl A, 20h
jmp @A+DPTR
mov A, #72h
xrl A, R1
xrl A, R6
xrl A, @R1
mov R0, #0B8h
mov R7, #0ECh
mov R0, #0h
sjmp label1

END

http://www.8052.com/users/disasm/

65

Chapter 6

MCU simulator

6.1 Short introduction
The MCU simulator is a tool designed to mimics behavior of a real MCU as
much as possible. But it can have certain limitations, the most expectable
limitation is of course the speed of simulation. This simulator is very slow,
but offers some extra features.

6.2 Modes of simulation
There are 4 modes of simulation:

Step Execute exactly one intruction, no matter how many machine cycles it
will take. This does not apply for macro-instruction, in that case each
instruction of the macro is executed separately.

Step over Execute as many instructions as possible until simulator cursor
changes its location from one line of source code to another.

Animate Do the same as “step” but in a loop, one after another until
stopped by a waring condition or user request.

Run This is generally the same as “animate”, but much faster, because GUI
is not updated so offten as in the “animate” mode.

(Step Back) Take back the last performed step. There is limited number
of step which can be taken back.

Virual HW can be enabled or disabled, it significantly affects speed of the
simulation. Of course simulation is slower when virtual HW is on.

66 CHAPTER 6. MCU SIMULATOR

6.3 Waring conditions
• Stack overflow
• Stack underflow
• Invalid instructions
• Watchdog overflow
• Invalid return from interrupt
• Reading from write only register
• Invalid access to IDATA/SFR
• Invalid access to EDATA
• Invalid access to XDATA
• Invalid access to bit
• Invalid access to CODE
• EEPROM write failure
• EEPROM write abort
• UART frame discard
• Illegal UART mode change
• Illegal Timer/Counter mode change

6.4 Limitations
1. UART simualation is limited in current version
2. SPI simulation is not implemented
3. Simulation of reduced power consumption modes is not supported
4. Simulated MCU is many times slower the real one would be on “normal”

conditions

6.5. VIRTUAL HARDWARE 67

6.5 Virtual hardware

MCU 8051 IDE simulator is also equipped with a few simulated simple hard-
ware devices, which can be connected to the simulated MCU. These virtual
hardware components are intended primarily to offer a better insight into
programs interacting with things like LEDs or keys.

All wires connected to specific GPIO lines are colored according to the
voltage level present on them, colors are the same as for graph in the bot-
tom panel (GREEN == log. 0; RED == log. 1; GRAY == not connected,
etc.) Each of these virtual HW components has its own configuration menu
and help text available trough that menu. Configuration can be saved to a
file with extension .vhc, and can be loaded from that file later. The con-
figuration menu is accessible trough the button with this icon: “ ”. The
“ ON ”/“ OFF ” button enables or disables entire subsystem of virtual hardware sim-
ulation including the graph of GPIO wires on the bottom panel.

6.5.1 DS1620 temperature sensor

Figure 6.1: DS1620 simulator
and its log window

Simulates DALLAS R©DS1620 thermometer along
with its 3-wire communication interface. Tem-
perature which this simulated device should mea-
sure can be set by used on the scale in DS1620
simulator window. All internal registers of the
device are displayed to the user and are modi-
fiable by the user, current configuration of the
device simulator including DS1620 non-volatile
registers can be save into a file for further use. All
communications with the simulated MCU and in-
ternal operation of the simulated thermometer
are displayed in simulator log, log can be accessed via the DS1620 simulator con-
figuration menu (“ ”).

6.5.2 File interface

Figure 6.2: PALE I/O interface

This tool can automatically switch states
of GPIO lines of the simulated accord-
ing to certain definition file and it can
also record all changes occurring on arbi-
trary GPIO line to a specified output file.
This function can be particularly useful
when you are dealing with a 8051 pro-

gram which extensively works with I/O ports.

68 CHAPTER 6. MCU SIMULATOR

6.5.3 LED Panel

Figure 6.3: LED Panel

This is the simplest example of such a
virtual hardware component. A simple
panel consisting of 8 independent LEDs
with common anode. Each LED can be
connected to separate port and pin and
react immediately to any change in volt-
age level on that line. Connections with
the µC are made with combo boxes on the
bottom side of the panel.

6.5.4 Single LED Display

Figure 6.4: LED Display

Single 8 segment LED display with one
decimal point. Common electrode for the
LEDs can be configured as well as the LED
color. Each LED can be independently
connected to any port and pin and reacts
immediately to any change in voltage level
on that pin. Common electrode is stati-
cally connected to either common ground
or Vcc.

6.5.5 Multiplexed LED Display

Figure 6.5: M LED Display

4 digits LED displays indented for run in mul-
tiplexed mode, LEDs are fading with config-
urable delay. Each digit has its own common
electrode which polarity is configurable, this
common electrode is connected to output from
an inverter or transistor. There are four color
shades for each LED segment, one for inactive,
one for active, one for fast blinking and one
for segment which was recently dimmed, that
makes it possible to see an image which would
probably appear on a real display when viewed just by the eye. Unit for the fading
interval is one instruction cycle.

6.5. VIRTUAL HARDWARE 69

6.5.6 LED Matrix

Figure 6.6: LED Matrix

Simple one color 8 x 8 LED matrix indented for
run in multiplexed mode, LEDs are fading with
configurable delay. Everything here is the same
as for the Multiplexed LED Display, except for
one thing, mapping. Mapping can be set to row,
column or random, which is default. Row map-
ping means that row which has been activated
right now immediately forgets which LEDs were
shinning last time and which were not. Column
mapping is the same but for columns and ran-
dom mapping means that each LED will dim af-

ter specified interval and not when its row or column is activated. So in random
mapping you have to wait until all LEDs are gray before you can draw a new image
without being affected by the last one.

6.5.7 Matrix Keypad

Figure 6.7: Matrix Keypad

4 x 4 Matrix keypad, each row and col-
umn can be connected to any GPIO
line. Connections with the µC are
made with the combo boxes. Keys
can be configured to behave as radio
button1. Note that this tool can be
also used to interconnect some port
pins together statically, like wires in
a bread board. Any key press takes
effect immediately in all other vir-
tual hardware components connected
to the same line.

1Radio buttons that means that one one key can be pressed at the time and when you
press another key, the originally pressed key will return back to non pressed state

70 CHAPTER 6. MCU SIMULATOR

6.5.8 Simple Keypad

Figure 6.8: Simple Keypad

Array of 8 independent keys, each one of
them can connect any GPIO line to the
ground. Any key press takes effect imme-
diately in all other virtual hardware com-
ponents connected to the same line. Keys
can also be configured to behave as radio
buttons.

6.5.9 LCD display controlled
by HD44780

This tool simulates a HD44780 character LCD of any size up to 2 rows and 40
columns. There are 11 I/O lines serving as interface for the MCU, “E”, “RS”,
“R/W” and “D0”..“D7”. User can view and modify content of the display data
RAM (DDRAM), the character generator RAM (CGRAM) and certain HD44780
registers: instruction register (IR), data register (DR), address counter (AC) and
display shift, these registers are shown in hexadecimal representation. User can
also view content of character generator ROM (CGROM) and set font to use. All
of the driver commands are fully supported and all important events occurring in
the simulated driver (HD44780) are recorded in the simulator log. User can also
see and modify certain HD44780 configuration flags like “B”, “S”, “D” and so on.
And the window is collapsible.

Figure 6.9: Simulated LCD display

Figure 6.10: HD44780 Log

Figure 6.11:
CGRAM

Figure 6.12:
DDRAM Figure 6.13: View on CGROM

71

Chapter 7

Writing hardware tool control
plug-ins

7.1 Foreword

Figure 7.1: An example of
HW control plug-in

It is not surprising that IDE for micro-controllers
should be capable of inter-operation with certain hard-
ware tools. MCU 8051 IDE has tool named HW plug-
ins manager which is responsible for loading and man-
aging plug-ins written in order to to “integrate” exit-
ing hardware tools into this IDE. With this feature ev-
ery author of a 8051 programmer, ICD, ICE etc. who
knows Tcl/Tk language has the opportunity to make
his or her own tool working in direct cooperation with
the IDE. These plug-ins have to be written at least par-
tially in the TCL language and use the Tk library along
with API of MCU 8051 IDE. But that doesn’t mean
that they should be written entirely in Tcl/Tk. On the
contrary I would encourage usage of another languages
for example SSP89S, also a part of MCU 8051 IDE
project, is written almost completely in C++/Qt4, but
only a “small” piece of the software is written in Tcl/Tk.
Tcl/Tk can easily inter-operate with C and C++, also
it is possible to run arbitrary separate process from in-
side of Tcl/Tk program and control it vie for example
TCP sockets or its stdin/stdout or something else.

72
CHAPTER 7. WRITING HARDWARE TOOL CONTROL

PLUG-INS

7.2 How to write your own plug-in
At first take these steps:

1. Create the plug-in directory
On POSIX system the plug-in directory have to be placed in
“/usr/share/mcu8051ide/hwplugins”, on Microsoft R©Windows R©the directory
is “<YourInstallationDirectory>\hwplugins”. The plug-in directory must
carry the name of your plug-in, where spaces are replaced with “_” (un-
derscore) characters. For example suppose you want to create a plug-in
named as “My First Plug-in v1.0”, then your plug-in directory directory is
“My_First_Plug-in_v1.0”.

2. Create the plug-in initialization file
Plug-in initialization file tells the IDE that there is some plug-in at all. The
file contains basic initialization of the plug-in environment and must follow
certain rules. The file name must also follow name of the plug-in in the same
way as the plug-in directory. But the initialization file have to be placed in
directory hwplugins. And must have extension .tcl! For example consider
again our “My First Plug-in v1.0” plug-in, as we mentioned before. The
plug-in directory is: “/usr/share/mcu8051ide/hwplugins/My_First_Plug-
in_v1.0” then the initialization file is:
“/usr/share/mcu8051ide/hwplugins/My_First_Plug-in_v1.0.tcl”.

3. Define mandatory variables

set AUTHOR "<your name>" ;# e.g. "Homer Simpson"
set EMAIL "<your_email@example.com>" ;# e.g. "superman.spiderman@supehero.ru"
set P_VERSION "<version_of_your_plug-in>" ;# e.g. "1.2.3" or "0.9"
set MIN_IDE_VER "1.1" ;# Mimimal required version of MCU 8051 IDE

4. Define mandatory functions

Free resources occupied by this plugin
proc dispose {} { ... }

Initialize the plug-in
proc init {main_frame current_namespace directory} { ... }

Restore previous session
proc restore_session {session_data} { ... }

Save plug-in session
proc save_session {} { ...; return <String> }

Is plugin busy ?
proc is_busy {} { ...; return <BooleanValue> }

7.3. USING MCU 8051 IDE API 73

“...” means any code you want there. See “/usr/share/mcu8051ide/hwplugins/plug-
in_template.txt” or “<YourInstallationDirectory>\hwplugins\plug-in_template.txt”
for more details and for a template for such file.

When you have these steps completed you have prepared basic environment
for the plug-in. Then the “HW plug-ins manager” in the right panel in IDE’s
GUI should now recognize your plug-in and be able to attempt to load it. If it
is not so, then there is definitely something wrong. Any other files which your
plug-in consist of and just whatever you want there should be placed in your plug-
in directory (1). And the initialization file should do nothing else than source
some real plug-in’s file(s) and call appropriate functions inside them. One more
important thing, the plug-in runs it dynamically assigned namespace. Take it
into account, otherwise your plug-in wont work! Function “init” takes the name of
this namespace in parameter “current_namespace”. So as you can see, it’s quite
easy you have just to define 4 variables and 5 functions and you can interface with
the IDE.

7.3 Using MCU 8051 IDE API
You can used any part the API you want, but the entire IDE’s API is wast and
may change in future without notice. So there is special API dedicated to use in
hardware control plug-ins, it is located in “::HwManager” namespace and consists
of merely 10 simple functions. This API is available since version 1.4. Here is the
list of its functions:

Check whether there is some project opened in the IDE
@return Bool - 1 == Yes, there is; 0 == No there is not

proc is_project_opened {}

Check whether MCU simulator is engaged
@return Bool - 0 == 1 == Yes, it is; No it is not (or no project is opened)

proc is_simulator_engaged {}

Get full name of file which is currently displayed in the source code editor
@return String - Full file name including path or empty string in case there is no project opened

proc get_current_file {}

Get full name of file which has been chosen as the project main file
@return String - Full file name or empty string

proc get_project_main_file {}

Get path the directory of currently active project
@return String - Directory path or empty string in case there is no project opened

proc get_project_dir {}

Get name of the current project
@return String - Name of the current project or empty string in case there is no project opened

proc get_project_name {}

Initiate compilation if at least one of the source files was modified

74
CHAPTER 7. WRITING HARDWARE TOOL CONTROL

PLUG-INS

@parm String success_callback - Any command to execute after successful compilation
@parm String failure_callback - Any command to execute after unsuccessful compilation
@return Bool - 1 == Process successfully started; 0 == Unable to comply (no project is opened)

proc compile_if_nessesary_and_callback {success_callback failure_callback}

Open the specified Intel R© 8 hex file in hexadecimal editor
@parm String filename - Name of file to open (including path)
@return Bool - 1 == Success; 0 == Failure

proc open_in_hexeditor {filename}

Start MCU simulator if possible
@return Bool - 1 == Success; 0 == Unable to comply

proc start_simulator {}

Shutdown MCU simulator if possible
@return Bool - 1 == Success; 0 == Unable to comply

proc shutdown_simulator {}

7.4 A basic example
Lets write just a simple plug-in which merely demonstrates usage of some of the
above mentioned functions.

Figure 7.2: A basic example of a plug-in

set AUTHOR "Homer Simpson"
set EMAIL "superman.spiderman@supehero.ru"
set P_VERSION "1.0"
set MIN_IDE_VER "1.3.11"

proc dispose {} {
tk_messageBox \

-title "My First Plug-in" \
-message "Called: dispose {}"

}

proc init {main_frame project_object current_namespace directory} {
pack [label $main_frame.l0 -text $current_namespace] -anchor w
pack [label $main_frame.l1 -text $directory] -anchor w

set f [labelframe $main_frame.f -text "My First Plug-in"]
pack [label $f.l0 -text "is_project_opened : [::HwManager::is_project_opened]"] -anchor w

7.5. RANDOM REMARKS 75

pack [label $f.l1 -text "is_simulator_engaged : [::HwManager::is_simulator_engaged]"] -anchor w
pack [label $f.l2 -text "get_current_file : [::HwManager::get_current_file]"] -anchor w
pack [label $f.l3 -text "get_project_main_file : [::HwManager::get_project_main_file]"] -anchor w
pack [label $f.l4 -text "get_project_dir : [::HwManager::get_project_dir]"] -anchor w
pack [label $f.l5 -text "l : [::HwManager::get_project_name]"] -anchor w

pack [ttk::button $f.b0 -text "update" -command "
$f.l0 configure -text \"is_project_opened : \[::HwManager::is_project_opened\]\"
$f.l1 configure -text \"is_simulator_engaged : \[::HwManager::is_simulator_engaged\]\"
$f.l2 configure -text \"get_current_file : \[::HwManager::get_current_file\]\"
$f.l3 configure -text \"get_project_main_file : \[::HwManager::get_project_main_file\]\"
$f.l4 configure -text \"get_project_dir : \[::HwManager::get_project_dir\]\"
$f.l5 configure -text \"get_project_name : \[::HwManager::get_project_name\]\"

"] -anchor w
pack $f -fill both -expand 1

pack [ttk::button $main_frame.b1 \
-text "start_simulator" \
-command {::HwManager::start_simulator} \

] -side left
pack [ttk::button $main_frame.b2 \

-text "shutdown_simulator" \
-command {::HwManager::shutdown_simulator} \

] -side left
}

proc restore_session {session_data} {
tk_messageBox \

-title "My First Plug-in" \
-message "Called: restore_session {$session_data}"

}

proc save_session {} {
tk_messageBox \

-title "My First Plug-in" \
-message "Called: save_session {}"

return "my data, time: [clock format [clock seconds] -format {%T}]"
}

proc is_busy {} {
return [expr {

[tk_messageBox \
-title "My First Plug-in" \
-message "Called: is_busy {}" \
-type {yesno}
]

== {yes}}]
}

7.5 Random remarks
• Don’t forget that your plug-in runs the main thread as well as the GUI of

the entire IDE. So if your plug-in does some time expensive operations and
it is probable that it does. Then these operations have to be performed in
either separate thread or have to run in separate process. It is also possible
to regularly “update” the application by reentering the event loop using Tcl’s
update command.

• Plug-in files must use encoding UTF-8 and should use LF (Line Feed) char-

76
CHAPTER 7. WRITING HARDWARE TOOL CONTROL

PLUG-INS

acter as line end delimiter. In other words Unix line termination sequence.

• Although it is possible to name the plug-in directory in any way what your OS
accept. It is generally a good idea to follow the mentioned recommendation.
At least the name of the initialization file have to follow the mentioned
recommendation.

• Plug-ins have unrestricted access to the entire application. So they should
be written carefully, because plug-ins can theoretically crash down the entire
IDE.

• Program errors which occurs during loading or unloading of a plug-in are
reported via a special dialog. In this dialog plug-in author and his or her
email address are mentioned.

• The above mentioned API provided by “::HwManager” is just a facade1.
Before version 1.4 plug-ins must have had to be written to access directly
the functionality currently hidden behind “::HwManager”, so it was much
more complicated.

• Each instance of a hardware plug-ins manager is bond to its project. But
actual plug-ins don’t have to be. That’s the reason why there is function
“::HwManager::is_project_opened ”. All functions inside the above men-
tioned API (::HwManager::*) works with the current project, not neces-
saryly with the project which is the HW manager bond with.

1A design pattern as described in the GOF book

77

Chapter 8

Command Line Interface

MCU 8051 IDE’s CLI makes it possible to use entire IDE just as an assembler,
disassembler or converter between .hex files and binary files. MCU 8051 IDE sup-
ports these switches:

Switch Meaning

General
–help, -h Show help for CLI
–quiet, -q Do not who initialization progress on start-up
–nosplash Do not show the splash screen
–nocolor, -n Do not show colorful output in console
–version, -V Show program version and exit
–defaults Ru program in empty session
–minimalized Run in minimalized window
–config-file filename Specify path to an alternative configuration file
–check-libraries Verify whether all required libraries are available
–ignore-last-session Start with an empty session
–open-project project Open just this project
–reset-user-settings Reset all user setting to defaults

Data conversions
–auto-indent input Reformat indentation the specified file
–hex2bin input output Convert Intel 8 Hex into a binary file
–bin2hex input output Convert a binary file in Intel 8 HEX
–sim2hex input output Convert MCU 8051 IDE simulator file to Intel 8 Hex file
–sim2bin input output Convert MCU 8051 IDE simulator file to binary file
–normalize-hex input Normalize Intel 8 HEX (force incremental addressing order)

Assembler/Disassembler
–disassemble hex_file Disassemble Intel 8 HEX file to hex_file.asm
–assemble asm_file Assemble the specified file
–compile asm_file The same as “–assemble”
–iram-size size Set size of internal data memory for assembler
–code-size size Set size of program data memory for assembler
–xram-size size Set size of external data memory for assembler
–no-opt Disable peephole optimization
–comp-quiet Suppress text output from the assembler
–no-sim Disable generation of .adf file
–no-bin Disable generation of .bin file
–no-lst Disable generation of .lst file

78 CHAPTER 8. COMMAND LINE INTERFACE

Switch Meaning
–no-hex Disable generation of .hex file
–warning-level 0-3 Set warning level to the specified level

Interesting examples:

Reset all IDE settings to defaults
mcu8051ide --reset-user-settings

Use MCU 8051 IDE as assembler (without GUI)
mcu8051ide --compile /some_directory/my_file.asm

Use MCU 8051 IDE as disssembler (without GUI)
mcu8051ide --disassemble /some_directory/my_file.hex

Use MCU 8051 IDE as convertor from binary files to Intel 8 HEX (without GUI)
mcu8051ide --bin2hex /some_directory/my_file /some_directory/my_file.hex

79

Chapter 9

Translating the IDE into different
languages

The IDE can be translated to almost any language. The translation can be ac-
complished by creating of a translation definition file. Such a file must follow
certain strict rules in order to work properly. Translation files are normally located
in directory “/usr/share/mcu8051ide/translations”, on Microsoft R©Windows R©the
directory is “<YourInstallationDirectory>\translations”. There you can find file
“template.txt” which is template of MCU 8051 IDE translation file. Along with it
there is also file “languages.txt” which defines names of languages to which the IDE
was already translated. These names are written in these languages. Translation
files look like this “ru.msg” (Russian translation) or “cs.msg” (Czech translation),
these files need to be regularly updated. Note also that these files are quite big, each
about 0.5MB and each contains about 4500 translated sentences. Further details
regarding the translation are mentioned directly in the files related to translation,
particularly in file “template.txt”. Refer to them if you are interested in making
your own translation of the IDE. This is an open-source project so any help is
appreciated.

The first several lines in file “template.txt”:

This is a template of MCU 8051 IDE translation file
#
This file allows to localize the the user environment of the IDE to almost any
language.
#
HOW TO MAKE IT WORK:
1) Copy this file (template.txt) to <lang_code>.msg in the same directory.
Where ‘‘<lang_code>’’ is supposed to be replaced with language code of
the translation. For example ‘‘ru’’ means Russian, or ‘‘cs’’ means Czech.
The language code must be lowercase.
2) Translate all sentences enclosed by ‘‘§’’ (paragraph) character. And be
sure to remove the ‘‘§’’ character.
3) Modify file ‘‘languages.tcl’’ and add name of language which you are

80
CHAPTER 9. TRANSLATING THE IDE INTO DIFFERENT

LANGUAGES

making the translation for. Name should be specified in that language.
#
IMPORTANT RULES FOR TRANSLATION:
1) Be aware of that this file is very sensitive.
2) Everything besides actual sentences for translation must not be modified
in any way! Otherwise the file might cause serious program instability.
3) Escape sequences and all special characters must be preserved.
4) Sentences enclosed with ‘‘"’’ (double quote) character, can be translated
into sentences with different length. But the same does not apply for
sentences enclosed with ‘‘{’’ and ‘‘}’’ (curly brackets) characters,
their lengths must stay preserved.
5) Do not translate ‘‘$’’ dollar symbol, it has a special meaning here, not
related to currency.
6) Keep UTF-8 encoding and if possible, please keep also Unix line ends.
#
NOTES:
1) ‘‘ ;# <-- NOT TRANSLATED YET’’ is just a comment and can be removed at
any time
2) Nothing is perfect ... if you find anything strange or not functional
here, please report it as a regular bug.
3) Recommended syntax highlight pattern for this file is "Tcl/Tk"
4) Please don’t hesitate to ask any questions.
#
Thank you for your cooperation, which helps us make the software better!
#

A random piece of the translation definition file template

mcset $l "Replace all" \
"§Replace all§" ;# <-- NOT TRANSLATED YET

mcset $l "Find next" \
"§Find next§" ;# <-- NOT TRANSLATED YET

mcset $l "Close" \
"§Close§" ;# <-- NOT TRANSLATED YET

mcset $l "Replace confirmation - %s" \
"§Replace confirmation - %s§" ;# <-- NOT TRANSLATED YET

mcset $l "Go to line" \
"§Go to line§" ;# <-- NOT TRANSLATED YET

mcset $l "Ok" \
"§Ok§" ;# <-- NOT TRANSLATED YET

mcset $l "Cancel" \
"§Cancel§" ;# <-- NOT TRANSLATED YET

mcset $l "Go to line - MCU 8051 IDE" \
"§Go to line - MCU 8051 IDE§" ;# <-- NOT TRANSLATED YET

mcset $l "Choose directory - MCU 8051 IDE" \
"§Choose directory - MCU 8051 IDE§" ;# <-- NOT TRANSLATED YET

81

Appendix A

License

MCU 8051 IDE and all its compo-
nents is distributed under terms of GNU
GPLv2.
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundations software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each authors protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyones free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Programs
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

82 APPENDIX A. LICENSE

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the programs name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c for details.

The hypothetical commands ‘show w and ‘show c should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w and ‘show c; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

83

Appendix B

Regression testing

B.1 Foreword

Figure B.1: Assembler regression test
run in terminal emulator

The IDE is featured with a regression test-
ing environment, the aim of this to make
the software as reliable as possible. Cur-
rently there is prepared environment for
testing the simulator engine and the built-
in assembler. This allows to write test
cases for specific software features and
check whether the results of these tests
conform to expected results. Regretfully
the test cases are NOT PREPARED
YET. Each time when a change is made
to the IDE’s code, these regression test should be run in order to detect possible
bug introductions caused by recent changes. Regression test also serves as a proof
of certain software functionality and reliability.

B.2 More about the implementation
Additional details can be found in the MCU 8051 IDE development snapshot down-
loaded from the project’s GIT repository in directory “regression_tests” in various
“README” files. Here we will mention just general overview.

Each test have its own directory, like ’test_something’ or ’another_test’, let’s
call this directory the test directory. Each test consist of a set of test cases. Each
test case should test one and only one specific function of the tested software.
Test cases are represented by files with extension .in located in directory named
’testcases’ inside the test directory.

Directory “results” inside the test directory should be left empty. It is used by
the testing environment for storing temporary files generated during the tests. The

84 APPENDIX B. REGRESSION TESTING

“testcases” directory also contains files intended for comparison with files generated
during the test and stored in the “results” directory, these files must have extension
“.<x>.exp”. Where “<x>” must be substituted with extension of a file which this
file is supposed to be compared to. In another words, if I want to check whether for
example “./results/something.abc” was generated as it should be, I have to create
file “./testcases/something.abc.exp” and this file will be automatically compared
with “./results/something.abc”.

And that’s it! This is simple, isn’t it? It’s just about comparing files. But how
are the tests run and how the files in the “results” directory gets generated? For
that we need some Bash script, which is used to run the test, let’s call this script
the runtest script. The runtest script must be located in the test directory and
must include the “rte.lib.sh” file, using the “source” command (or ’.’ command).
This script should have set permissions to be executable and this script specifies
how exactly should be the test performed and also runs the test itself.

When the script is about to exit, this condition is trapped and the ’rte.lib.sh’
reacts by starting the test. So there is no need to explicitly run the test by invoking
some function or something like that. It runs the test automatically when there is
nothing else left to do.

85

Appendix C

Project web page and other media

C.1 Official project web page

Official web page of the MCU 8051 IDE project provides basic presentation of
the project. Contains news about the project development, users comments and
forums for users. Also the project’s hardware tools are described here and there
is some personal information about authors of the project. All components of the
IDE can be downloaded from sourceforge.net, which provides hosting for the web
pages and entire project. The address is http://mcu8051ide.sf.net.

Figure C.1: Official web page of the MCU 8051 IDE project

www.sourceforge.net
http://mcu8051ide.sf.net

86APPENDIX C. PROJECT WEB PAGE AND OTHER MEDIA

C.2 Other media
Project has also its own page on Source Forge, ohloh and Fresh meat. Installation
packages are in official Fedora repositories and Ubuntu repositories. There is cur-
rently also one Gentoo overlay providing ebuild for the IDE. Project has its own
IRC channel, although it is rarely used. And wiki pages. Not yet in a good shape.
Project is also mentioned on Wikipedia. Project official web page is written in
PHP5, XHTML-1.1, CSS2 and JavaScript and uses MySQL as database. Volun-
teers who would like to improve the web page are also welcomed as contributors to
the project.

C.3 GIT repository
GIT is a distributed revision control system originally developed by Linus Torvalds.
MCU 8051 IDE also takes advantage of GIT and uses it as its tool for managing
current development version. The project’s GIT repository is hosted by Source
Forge and is available at address “git://mcu8051ide.git.sourceforge.net/gitroot/mcu8051ide/mcu8051ide”.
Access to the repository is for reading only unless you posses the required clearance.
In the GIT repository you can always find the newest development version with
the newest bug fixes and features. List of latest changes is available on http:
//mcu8051ide.git.sourceforge.net. Here is a short description to download
and install the latest development version of the IDE:

1. Install GIT
2. Run “git clone git://mcu8051ide.git.sourceforge.net/gitroot/mcu8051ide/mcu8051ide”.

It will create your own copy of the Git repository in the current directory.
3. Once you have an existing copy of the repository you can just update it each

time when you want the fresh version by this command:
“git fetch origin master”

4. Then you can try the downloaded IDE version without installation using the
following sequence of commands (for POSIX only)

(a) cd mcu8051ide/lib
(b) ./main.tcl

5. Or install it and the use it using the following sequence of commands (for
POSIX only)

(a) cd mcu8051ide
(b) ./configure && make
(c) sudo su # or just "su"
(d) make install

http://mcu8051ide.git.sourceforge.net
http://mcu8051ide.git.sourceforge.net

87

Appendix D

8051 Instructions in numerical
Order

Opcode Mnemonic Operands Bytes Flags Cycles
0x00 NOP 1 1
0x01 AJMP code11 2 2
0x02 LJMP code16 3 2
0x03 RR A 1 1
0x04 INC A 1 P 1
0x05 INC data 2 1
0x06 INC @R0 1 1
0x07 INC @R1 1 1
0x08 INC R0 1 1
0x09 INC R1 1 1
0x0A INC R2 1 1
0x0B INC R3 1 1
0x0C INC R4 1 1
0x0D INC R5 1 1
0x0E INC R6 1 1
0x0F INC R7 1 1
0x10 JBC bit code8 3 2
0x11 ACALL code11 2 2
0x12 LCALL code16 3 2
0x13 RRC A 1 CY P 1
0x14 DEC A 1 P 1
0x15 DEC data 2 1
0x16 DEC @R0 1 1
0x17 DEC @R1 1 1
0x18 DEC R0 1 1
0x19 DEC R1 1 1
0x1A DEC R2 1 1
0x1B DEC R3 1 1
0x1C DEC R4 1 1
0x1D DEC R5 1 1
0x1E DEC R6 1 1
0x1F DEC R7 1 1
0x20 JB bit code8 3 2
0x21 AJMP code11 2 2

88
APPENDIX D. 8051 INSTRUCTIONS IN NUMERICAL

ORDER

Opcode Mnemonic Operands Bytes Flags Cycles
0x22 RET 1 2
0x23 RL A 1 1
0x24 ADD A #imm8 2 CY AC OV P 1
0x25 ADD A data 2 CY AC OV P 1
0x26 ADD A @R0 1 CY AC OV P 1
0x27 ADD A @R1 1 CY AC OV P 1
0x28 ADD A R0 1 CY AC OV P 1
0x29 ADD A R1 1 CY AC OV P 1
0x2A ADD A R2 1 CY AC OV P 1
0x2B ADD A R3 1 CY AC OV P 1
0x2C ADD A R4 1 CY AC OV P 1
0x2D ADD A R5 1 CY AC OV P 1
0x2E ADD A R6 1 CY AC OV P 1
0x2F ADD A R7 1 CY AC OV P 1
0x30 JNB bit code8 3 2
0x31 ACALL code11 2 2
0x32 RETI 1 2
0x33 RLC A 1 CY P 1
0x34 ADDC A #imm8 2 CY AC OV P 1
0x35 ADDC A data 2 CY AC OV P 1
0x36 ADDC A @R0 1 CY AC OV P 1
0x37 ADDC A @R1 1 CY AC OV P 1
0x38 ADDC A R0 1 CY AC OV P 1
0x39 ADDC A R1 1 CY AC OV P 1
0x3A ADDC A R2 1 CY AC OV P 1
0x3B ADDC A R3 1 CY AC OV P 1
0x3C ADDC A R4 1 CY AC OV P 1
0x3D ADDC A R5 1 CY AC OV P 1
0x3E ADDC A R6 1 CY AC OV P 1
0x3F ADDC A R7 1 CY AC OV P 1
0x40 JC code8 2 2
0x41 AJMP code11 2 2
0x42 ORL data A 2 1
0x43 ORL data #imm8 3 2
0x44 ORL A #imm8 2 P 1
0x45 ORL A data 2 P 1
0x46 ORL A @R0 1 P 1
0x47 ORL A @R1 1 P 1
0x48 ORL A R0 1 P 1
0x49 ORL A R1 1 P 1
0x4A ORL A R2 1 P 1
0x4B ORL A R3 1 P 1
0x4C ORL A R4 1 P 1
0x4D ORL A R5 1 P 1
0x4E ORL A R6 1 P 1
0x4F ORL A R7 1 P 1
0x50 JNC code8 2 2
0x51 ACALL code11 2 2
0x52 ANL data A 2 1
0x53 ANL data #imm8 3 2
0x54 ANL A #imm8 2 P 1
0x55 ANL A data 2 P 1
0x56 ANL A @R0 1 P 1
0x57 ANL A @R1 1 P 1
0x58 ANL A R0 1 P 1

89

Opcode Mnemonic Operands Bytes Flags Cycles
0x59 ANL A R1 1 P 1
0x5A ANL A R2 1 P 1
0x5B ANL A R3 1 P 1
0x5C ANL A R4 1 P 1
0x5D ANL A R5 1 P 1
0x5E ANL A R6 1 P 1
0x5F ANL A R7 1 P 1
0x60 JZ code8 2 2
0x61 AJMP code11 2 2
0x62 XRL data A 2 1
0x63 XRL data #imm8 3 2
0x64 XRL A #imm8 2 P 1
0x65 XRL A data 2 P 1
0x66 XRL A @R0 1 P 1
0x67 XRL A @R1 1 P 1
0x68 XRL A R0 1 P 1
0x69 XRL A R1 1 P 1
0x6A XRL A R2 1 P 1
0x6B XRL A R3 1 P 1
0x6C XRL A R4 1 P 1
0x6D XRL A R5 1 P 1
0x6E XRL A R6 1 P 1
0x6F XRL A R7 1 P 1
0x70 JNZ code8 2 2
0x71 ACALL code11 2 2
0x72 ORL C bit 2 CY 2
0x73 JMP @A+DPTR 1 2
0x74 MOV A #imm8 2 P 1
0x75 MOV data #imm8 3 2
0x76 MOV @R0 #imm8 2 1
0x77 MOV @R1 #imm8 2 1
0x78 MOV R0 #imm8 2 1
0x79 MOV R1 #imm8 2 1
0x7A MOV R2 #imm8 2 1
0x7B MOV R3 #imm8 2 1
0x7C MOV R4 #imm8 2 1
0x7D MOV R5 #imm8 2 1
0x7E MOV R6 #imm8 2 1
0x7F MOV R7 #imm8 2 1
0x80 SJMP code8 2 2
0x81 AJMP code11 2 2
0x82 ANL C bit 2 CY 2
0x83 MOVC A @A+PC 1 P 2
0x84 DIV AB 1 CY OV P 4
0x85 MOV data data 3 2
0x86 MOV data @R0 2 2
0x87 MOV data @R1 2 2
0x88 MOV data R0 2 2
0x89 MOV data R1 2 2
0x8A MOV data R2 2 2
0x8B MOV data R3 2 2
0x8C MOV data R4 2 2
0x8D MOV data R5 2 2
0x8E MOV data R6 2 2
0x8F MOV data R7 2 2

90
APPENDIX D. 8051 INSTRUCTIONS IN NUMERICAL

ORDER

Opcode Mnemonic Operands Bytes Flags Cycles
0x90 MOV DPTR #imm16 3 2
0x91 ACALL code11 2 2
0x92 MOV bit C 2 2
0x93 MOVC A @A+DPTR 1 P 2
0x94 SUBB A #imm8 2 CY AC OV P 1
0x95 SUBB A data 2 CY AC OV P 1
0x96 SUBB A @R0 1 CY AC OV P 1
0x97 SUBB A @R1 1 CY AC OV P 1
0x98 SUBB A R0 1 CY AC OV P 1
0x99 SUBB A R1 1 CY AC OV P 1
0x9A SUBB A R2 1 CY AC OV P 1
0x9B SUBB A R3 1 CY AC OV P 1
0x9C SUBB A R4 1 CY AC OV P 1
0x9D SUBB A R5 1 CY AC OV P 1
0x9E SUBB A R6 1 CY AC OV P 1
0x9F SUBB A R7 1 CY AC OV P 1
0xA0 ORL C /bit 2 CY 2
0xA1 AJMP code11 2 2
0xA2 MOV C bit 2 CY 1
0xA3 INC DPTR 1 2
0xA4 MUL AB 1 CY OV P 4
0xA5 Invalid opcode
0xA6 MOV @R0 data 2 2
0xA7 MOV @R1 data 2 2
0xA8 MOV R0 data 2 2
0xA9 MOV R1 data 2 2
0xAA MOV R2 data 2 2
0xAB MOV R3 data 2 2
0xAC MOV R4 data 2 2
0xAD MOV R5 data 2 2
0xAE MOV R6 data 2 2
0xAF MOV R7 data 2 2
0xB0 ANL C /bit 2 CY 2
0xB1 ACALL code11 2 2
0xB2 CPL bit 2 1
0xB3 CPL C 1 CY 1
0xB4 CJNE A #imm8 code8 3 CY 2
0xB5 CJNE A data code8 3 CY 2
0xB6 CJNE @R0 #imm8 code8 3 CY 2
0xB7 CJNE @R1 #imm8 code8 3 CY 2
0xB8 CJNE R0 #imm8 code8 3 CY 2
0xB9 CJNE R1 #imm8 code8 3 CY 2
0xBA CJNE R2 #imm8 code8 3 CY 2
0xBB CJNE R3 #imm8 code8 3 CY 2
0xBC CJNE R4 #imm8 code8 3 CY 2
0xBD CJNE R5 #imm8 code8 3 CY 2
0xBE CJNE R6 #imm8 code8 3 CY 2
0xBF CJNE R7 #imm8 code8 3 CY 2
0xC0 PUSH data 2 2
0xC1 AJMP code11 2 2
0xC2 CLR bit 2 1
0xC3 CLR C 1 CY 1
0xC4 SWAP A 1 1
0xC5 XCH A data 2 P 1
0xC6 XCH A @R0 1 P 1

91

Opcode Mnemonic Operands Bytes Flags Cycles
0xC7 XCH A @R1 1 P 1
0xC8 XCH A R0 1 P 1
0xC9 XCH A R1 1 P 1
0xCA XCH A R2 1 P 1
0xCB XCH A R3 1 P 1
0xCC XCH A R4 1 P 1
0xCD XCH A R5 1 P 1
0xCE XCH A R6 1 P 1
0xCF XCH A R7 1 P 1
0xD0 POP data 2 2
0xD1 ACALL code11 2 2
0xD2 SETB bit 2 1
0xD3 SETB C 1 CY 1
0xD4 DA A 1 CY P 1
0xD5 DJNZ data code8 3 2
0xD6 XCHD A @R0 1 P 1
0xD7 XCHD A @R1 1 P 1
0xD8 DJNZ R0 code8 2 2
0xD9 DJNZ R1 code8 2 2
0xDA DJNZ R2 code8 2 2
0xDB DJNZ R3 code8 2 2
0xDC DJNZ R4 code8 2 2
0xDD DJNZ R5 code8 2 2
0xDE DJNZ R6 code8 2 2
0xDF DJNZ R7 code8 2 2
0xE0 MOVX A @DPTR 1 P 2
0xE1 AJMP code11 2 2
0xE2 MOVX A @R0 1 P 2
0xE3 MOVX A @R1 1 P 2
0xE4 CLR A 1 P 1
0xE5 MOV A data 2 P 1
0xE6 MOV A @R0 1 P 1
0xE7 MOV A @R1 1 P 1
0xE8 MOV A R0 1 P 1
0xE9 MOV A R1 1 P 1
0xEA MOV A R2 1 P 1
0xEB MOV A R3 1 P 1
0xEC MOV A R4 1 P 1
0xED MOV A R5 1 P 1
0xEE MOV A R6 1 P 1
0xEF MOV A R7 1 P 1
0xF0 MOVX @DPTR A 1 2
0xF1 ACALL code11 2 2
0xF2 MOVX @R0 A 1 2
0xF3 MOVX @R1 A 1 2
0xF4 CPL A 1 P 1
0xF5 MOV data A 2 1
0xF6 MOV @R0 A 1 1
0xF7 MOV @R1 A 1 1
0xF8 MOV R0 A 1 1
0xF9 MOV R1 A 1 1
0xFA MOV R2 A 1 1
0xFB MOV R3 A 1 1
0xFC MOV R4 A 1 1
0xFD MOV R5 A 1 1

92
APPENDIX D. 8051 INSTRUCTIONS IN NUMERICAL

ORDER

Opcode Mnemonic Operands Bytes Flags Cycles
0xFE MOV R6 A 1 1
0xFF MOV R7 A 1 1

Table D.1: 8051 Instructions in numerical Order

93

Appendix E

8051 Instructions in alphabetical
order

Opcode Mnemonic Operands Bytes Flags Cycles
0x11 ACALL code11 2 2
0x31 ACALL code11 2 2
0x51 ACALL code11 2 2
0x71 ACALL code11 2 2
0x91 ACALL code11 2 2
0xB1 ACALL code11 2 2
0xD1 ACALL code11 2 2
0xF1 ACALL code11 2 2
0x24 ADD A #imm8 2 CY AC OV P 1
0x25 ADD A data 2 CY AC OV P 1
0x26 ADD A @R0 1 CY AC OV P 1
0x27 ADD A @R1 1 CY AC OV P 1
0x28 ADD A R0 1 CY AC OV P 1
0x29 ADD A R1 1 CY AC OV P 1
0x2A ADD A R2 1 CY AC OV P 1
0x2B ADD A R3 1 CY AC OV P 1
0x2C ADD A R4 1 CY AC OV P 1
0x2D ADD A R5 1 CY AC OV P 1
0x2E ADD A R6 1 CY AC OV P 1
0x2F ADD A R7 1 CY AC OV P 1
0x34 ADDC A #imm8 2 CY AC OV P 1
0x35 ADDC A data 2 CY AC OV P 1
0x36 ADDC A @R0 1 CY AC OV P 1
0x37 ADDC A @R1 1 CY AC OV P 1
0x38 ADDC A R0 1 CY AC OV P 1
0x39 ADDC A R1 1 CY AC OV P 1
0x3A ADDC A R2 1 CY AC OV P 1
0x3B ADDC A R3 1 CY AC OV P 1
0x3C ADDC A R4 1 CY AC OV P 1
0x3D ADDC A R5 1 CY AC OV P 1
0x3E ADDC A R6 1 CY AC OV P 1
0x3F ADDC A R7 1 CY AC OV P 1
0x01 AJMP code11 2 2
0x21 AJMP code11 2 2

94
APPENDIX E. 8051 INSTRUCTIONS IN ALPHABETICAL

ORDER

Opcode Mnemonic Operands Bytes Flags Cycles
0x41 AJMP code11 2 2
0x61 AJMP code11 2 2
0x81 AJMP code11 2 2
0xA1 AJMP code11 2 2
0xC1 AJMP code11 2 2
0xE1 AJMP code11 2 2
0x52 ANL data A 2 1
0x53 ANL data #imm8 3 2
0x54 ANL A #imm8 2 P 1
0x55 ANL A data 2 P 1
0x56 ANL A @R0 1 P 1
0x57 ANL A @R1 1 P 1
0x58 ANL A R0 1 P 1
0x59 ANL A R1 1 P 1
0x5A ANL A R2 1 P 1
0x5B ANL A R3 1 P 1
0x5C ANL A R4 1 P 1
0x5D ANL A R5 1 P 1
0x5E ANL A R6 1 P 1
0x5F ANL A R7 1 P 1
0x82 ANL C bit 2 CY 2
0xB0 ANL C /bit 2 CY 2
0xB4 CJNE A #imm8 code8 3 CY 2
0xB5 CJNE A data code8 3 CY 2
0xB6 CJNE @R0 #imm8 code8 3 CY 2
0xB7 CJNE @R1 #imm8 code8 3 CY 2
0xB8 CJNE R0 #imm8 code8 3 CY 2
0xB9 CJNE R1 #imm8 code8 3 CY 2
0xBA CJNE R2 #imm8 code8 3 CY 2
0xBB CJNE R3 #imm8 code8 3 CY 2
0xBC CJNE R4 #imm8 code8 3 CY 2
0xBD CJNE R5 #imm8 code8 3 CY 2
0xBE CJNE R6 #imm8 code8 3 CY 2
0xBF CJNE R7 #imm8 code8 3 CY 2
0xC2 CLR bit 2 1
0xC3 CLR C 1 CY 1
0xE4 CLR A 1 P 1
0xB2 CPL bit 2 1
0xB3 CPL C 1 CY 1
0xF4 CPL A 1 P 1
0xD4 DA A 1 CY P 1
0x14 DEC A 1 P 1
0x15 DEC data 2 1
0x16 DEC @R0 1 1
0x17 DEC @R1 1 1
0x18 DEC R0 1 1
0x19 DEC R1 1 1
0x1A DEC R2 1 1
0x1B DEC R3 1 1
0x1C DEC R4 1 1
0x1D DEC R5 1 1
0x1E DEC R6 1 1
0x1F DEC R7 1 1
0x84 DIV AB 1 CY OV P 4
0xD5 DJNZ data code8 3 2

95

Opcode Mnemonic Operands Bytes Flags Cycles
0xD8 DJNZ R0 code8 2 2
0xD9 DJNZ R1 code8 2 2
0xDA DJNZ R2 code8 2 2
0xDB DJNZ R3 code8 2 2
0xDC DJNZ R4 code8 2 2
0xDD DJNZ R5 code8 2 2
0xDE DJNZ R6 code8 2 2
0xDF DJNZ R7 code8 2 2
0x04 INC A 1 P 1
0x05 INC data 2 1
0x06 INC @R0 1 1
0x07 INC @R1 1 1
0x08 INC R0 1 1
0x09 INC R1 1 1
0x0A INC R2 1 1
0x0B INC R3 1 1
0x0C INC R4 1 1
0x0D INC R5 1 1
0x0E INC R6 1 1
0x0F INC R7 1 1
0xA3 INC DPTR 1 2
0x20 JB bit code8 3 2
0x10 JBC bit code8 3 2
0x40 JC code8 2 2
0x73 JMP @A+DPTR 1 2
0x30 JNB bit code8 3 2
0x50 JNC code8 2 2
0x70 JNZ code8 2 2
0x60 JZ code8 2 2
0x12 LCALL code16 3 2
0x02 LJMP code16 3 2
0x74 MOV A #imm8 2 P 1
0x75 MOV data #imm8 3 2
0x76 MOV @R0 #imm8 2 1
0x77 MOV @R1 #imm8 2 1
0x78 MOV R0 #imm8 2 1
0x79 MOV R1 #imm8 2 1
0x7A MOV R2 #imm8 2 1
0x7B MOV R3 #imm8 2 1
0x7C MOV R4 #imm8 2 1
0x7D MOV R5 #imm8 2 1
0x7E MOV R6 #imm8 2 1
0x7F MOV R7 #imm8 2 1
0x85 MOV data data 3 2
0x86 MOV data @R0 2 2
0x87 MOV data @R1 2 2
0x88 MOV data R0 2 2
0x89 MOV data R1 2 2
0x8A MOV data R2 2 2
0x8B MOV data R3 2 2
0x8C MOV data R4 2 2
0x8D MOV data R5 2 2
0x8E MOV data R6 2 2
0x8F MOV data R7 2 2
0x90 MOV DPTR #imm16 3 2

96
APPENDIX E. 8051 INSTRUCTIONS IN ALPHABETICAL

ORDER

Opcode Mnemonic Operands Bytes Flags Cycles
0x92 MOV bit C 2 2
0xA2 MOV C bit 2 CY 1
0xA6 MOV @R0 data 2 2
0xA7 MOV @R1 data 2 2
0xA8 MOV R0 data 2 2
0xA9 MOV R1 data 2 2
0xAA MOV R2 data 2 2
0xAB MOV R3 data 2 2
0xAC MOV R4 data 2 2
0xAD MOV R5 data 2 2
0xAE MOV R6 data 2 2
0xAF MOV R7 data 2 2
0xE5 MOV A data 2 P 1
0xE6 MOV A @R0 1 P 1
0xE7 MOV A @R1 1 P 1
0xE8 MOV A R0 1 P 1
0xE9 MOV A R1 1 P 1
0xEA MOV A R2 1 P 1
0xEB MOV A R3 1 P 1
0xEC MOV A R4 1 P 1
0xED MOV A R5 1 P 1
0xEE MOV A R6 1 P 1
0xEF MOV A R7 1 P 1
0xF5 MOV data A 2 1
0xF6 MOV @R0 A 1 1
0xF7 MOV @R1 A 1 1
0xF8 MOV R0 A 1 1
0xF9 MOV R1 A 1 1
0xFA MOV R2 A 1 1
0xFB MOV R3 A 1 1
0xFC MOV R4 A 1 1
0xFD MOV R5 A 1 1
0xFE MOV R6 A 1 1
0xFF MOV R7 A 1 1
0x83 MOVC A @A+PC 1 P 2
0x93 MOVC A @A+DPTR 1 P 2
0xE0 MOVX A @DPTR 1 P 2
0xE2 MOVX A @R0 1 P 2
0xE3 MOVX A @R1 1 P 2
0xF0 MOVX @DPTR A 1 2
0xF2 MOVX @R0 A 1 2
0xF3 MOVX @R1 A 1 2
0xA4 MUL AB 1 CY OV P 4
0x00 NOP 1 1
0x42 ORL data A 2 1
0x43 ORL data #imm8 3 2
0x44 ORL A #imm8 2 P 1
0x45 ORL A data 2 P 1
0x46 ORL A @R0 1 P 1
0x47 ORL A @R1 1 P 1
0x48 ORL A R0 1 P 1
0x49 ORL A R1 1 P 1
0x4A ORL A R2 1 P 1
0x4B ORL A R3 1 P 1
0x4C ORL A R4 1 P 1

97

Opcode Mnemonic Operands Bytes Flags Cycles
0x4D ORL A R5 1 P 1
0x4E ORL A R6 1 P 1
0x4F ORL A R7 1 P 1
0x72 ORL C bit 2 CY 2
0xA0 ORL C /bit 2 CY 2
0xD0 POP data 2 2
0xC0 PUSH data 2 2
0x22 RET 1 2
0x32 RETI 1 2
0x23 RL A 1 1
0x33 RLC A 1 CY P 1
0x03 RR A 1 1
0x13 RRC A 1 CY P 1
0xD2 SETB bit 2 1
0xD3 SETB C 1 CY 1
0x80 SJMP code8 2 2
0x94 SUBB A #imm8 2 CY AC OV P 1
0x95 SUBB A data 2 CY AC OV P 1
0x96 SUBB A @R0 1 CY AC OV P 1
0x97 SUBB A @R1 1 CY AC OV P 1
0x98 SUBB A R0 1 CY AC OV P 1
0x99 SUBB A R1 1 CY AC OV P 1
0x9A SUBB A R2 1 CY AC OV P 1
0x9B SUBB A R3 1 CY AC OV P 1
0x9C SUBB A R4 1 CY AC OV P 1
0x9D SUBB A R5 1 CY AC OV P 1
0x9E SUBB A R6 1 CY AC OV P 1
0x9F SUBB A R7 1 CY AC OV P 1
0xC4 SWAP A 1 1
0xC5 XCH A data 2 P 1
0xC6 XCH A @R0 1 P 1
0xC7 XCH A @R1 1 P 1
0xC8 XCH A R0 1 P 1
0xC9 XCH A R1 1 P 1
0xCA XCH A R2 1 P 1
0xCB XCH A R3 1 P 1
0xCC XCH A R4 1 P 1
0xCD XCH A R5 1 P 1
0xCE XCH A R6 1 P 1
0xCF XCH A R7 1 P 1
0xD6 XCHD A @R0 1 P 1
0xD7 XCHD A @R1 1 P 1
0x62 XRL data A 2 1
0x63 XRL data #imm8 3 2
0x64 XRL A #imm8 2 P 1
0x65 XRL A data 2 P 1
0x66 XRL A @R0 1 P 1
0x67 XRL A @R1 1 P 1
0x68 XRL A R0 1 P 1
0x69 XRL A R1 1 P 1
0x6A XRL A R2 1 P 1
0x6B XRL A R3 1 P 1
0x6C XRL A R4 1 P 1
0x6D XRL A R5 1 P 1
0x6E XRL A R6 1 P 1

98
APPENDIX E. 8051 INSTRUCTIONS IN ALPHABETICAL

ORDER

Opcode Mnemonic Operands Bytes Flags Cycles
0x6F XRL A R7 1 P 1
0xA5 Invalid opcode

Table E.1: 8051 Instructions in lexical Order

99

Appendix F

List of supported
micro-controllers

F.0.1 Intel R©

8051 http://download.intel.com/design/MCS51/MANUALS/27238302.pdf
80C51 http://download.intel.com/design/MCS51/MANUALS/27238302.pdf
8052 http://download.intel.com/design/MCS51/MANUALS/27238302.pdf

F.0.2 Atmel R©

Flash (Reprogramable)
AT89C2051 http://www.atmel.com/dyn/resources/prod_documents/doc0368.pdf
AT89C4051 http://www.atmel.com/dyn/resources/prod_documents/doc1001.pdf
AT89C51 http://www.atmel.com/dyn/resources/prod_documents/doc0265.pdf
AT89C51RC http://www.atmel.com/dyn/resources/prod_documents/doc1920.pdf
AT89C52 http://www.atmel.com/dyn/resources/prod_documents/doc0313.pdf
AT89C55WD http://www.atmel.com/dyn/resources/prod_documents/doc1921.pdf
AT89LV51 http://www.atmel.com/dyn/resources/prod_documents/doc0303.pdf
AT89LV52 http://www.atmel.com/dyn/resources/prod_documents/doc0375.pdf
AT89LV55 http://www.atmel.com/dyn/resources/prod_documents/doc0811.pdf

Flash ISP (Programable via ISP)
AT89S52 http://www.atmel.com/dyn/resources/prod_documents/doc1919.pdf
AT89LS51 http://www.atmel.com/dyn/resources/prod_documents/doc3053.pdf
AT89LS52 http://www.atmel.com/dyn/resources/prod_documents/doc2601.pdf
AT89S8253 http://www.atmel.com/dyn/resources/prod_documents/doc3286.pdf
AT89S2051 http://www.atmel.com/dyn/resources/prod_documents/doc3390.pdf
AT89S4051 http://www.atmel.com/dyn/resources/prod_documents/doc3390.pdf

OTP (One-Time Programmable)
T87C5101 http://www.atmel.com/dyn/resources/prod_documents/doc3c0c80904bc57.pdf
T83C5101 http://www.atmel.com/dyn/resources/prod_documents/doc3c0c80904bc57.pdf
AT80C32X2 http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
TS87C52X2 http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
AT87C52X2 http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
AT80C54X2 http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf

http://download.intel.com/design/MCS51/MANUALS/27238302.pdf
http://download.intel.com/design/MCS51/MANUALS/27238302.pdf
http://download.intel.com/design/MCS51/MANUALS/27238302.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0368.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc1001.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0265.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc1920.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0313.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc1921.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0303.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0375.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0811.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc1919.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc3053.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2601.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc3286.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc3390.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc3390.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc3c0c80904bc57.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc3c0c80904bc57.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf

100
APPENDIX F. LIST OF SUPPORTED

MICRO-CONTROLLERS

ROM
T83C5102 http://www.atmel.com/dyn/resources/prod_documents/doc3c0c80904bc57.pdf
TS80C32X2 http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
TS80C52X2 http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
AT80C58X2 http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
AT87C54X2 http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
AT87C58X2 http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
TS80C54X2 http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
TS80C58X2 http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
TS87C54X2 http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
AT80C52X2 http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
TS87C58X2 http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf

ROMless
TS80C31X2 http://www.atmel.com/dyn/resources/prod_documents/doc4428.pdf
AT80C31X2 http://www.atmel.com/dyn/resources/prod_documents/doc4428.pdf

http://www.atmel.com/dyn/resources/prod_documents/doc3c0c80904bc57.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4184.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4431.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4428.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc4428.pdf

101

Appendix G

Change log

1.3.11 -> 1.4
* Bug fixes
* Added new Virtual HW component: LCD display controlled by HD44780
* Added new Virtual HW component: simulated DS1620 temperature sensor
* Added new Virtual HW component: File interface
* Added AT89S51
* Improved performance of Virtual HW
* Added support for spelling checker (Hunspell)
* Added 8051 Instruction table
* Improved table of symbols on the right panel
* Final draft of the handbook

1.3.10 -> 1.3.11
* Bug fixes
* New interface for hardware control plug-ins
* Added new assembler directives: ELSEIF ELSEIFN ELSEIFDEF ELSEIFNDEF
* Removed assembler directive: EXITM

1.3.9 -> 1.3.10
* Bug fixes
* Extended help menu
* Extended global configuration dialog
* Added support for multiple widget styles and GUI background colors
* Added draft of handbook
* Added basic support for assembler and simulator regression testing
* Added regular support for i18n (internationalization)
* Modified welcome dialog
* Added support for external links in the GUI

1.3.8 -> 1.3.9
* Bug fixes

1.3.7 -> 1.3.8
* Bug fixes
* Added feature "Global Font Size Factor" (see MCU 8051 IDE configuration dialog)
* Added breakpoint validation

1.3.6 -> 1.3.7
* Bug fixes

1.3.5 -> 1.3.6

102 APPENDIX G. CHANGE LOG

* Bug fixes

1.3.4 -> 1.3.5
* Bug fixes

1.3.3 -> 1.3.4
* "Modernized" GUI
* Bug fixes

1.3.1 -> 1.3.3
* Bug fixes

1.3.1 -> 1.3.2
* Bug fixes

1.3 -> 1.3.1
* Dependency on TclX is now only optional
* Important chage !: Native assembler now expands macro instructions before doing conditional

assembly and before defining constants and variables ! Control sequence $NOMACROSFIRST can
be used to change this behavior to the state of previous versions.

* Added support for AS31 assembler
* Added files notepad
* Improved instruction help panel
* Native assembler was extended to support these directives: "IFN IFDEF IFNDEF BYTE FLAG REPT
TIMES" and these constrol sequences: "$NOXR $NOXREF $XR $XREF $NOSB $SB $RESTORE $RS $SA
$SAVE $PHILIPS $NOPI $PI $NOTABS $NOMOD51 $NOBUILTIN $NOMO $MO $MOD51 $NOMACRO $NOMR $LI
$NOLI $GENONLY $GO $NOGEN $NOGE $GEN $GE $ $EJ $NODB $NODEBUG $DB $DEBUG $CONDONLY $NOCOND
$COND $TT $PW $PL $MR $MACRO $INC $WARNING $ERROR $DA $NOMACROSFIRST"
* Added stack monitor
* Various bug fixes

1.2 -> 1.3
* New dependency: TclX (tested with v8.4)
* Added RS232/UART debugger
* A few changes in assembler
* Bug fixes (Thanks to Miroslav Hradílek for many useful bug reports)

1.1.1 -> 1.2
* Bug fixes
* Added tab bar

1.1 -> 1.1.1
* Added "Special calculator"
* Added "Base converter"
* Many tiny improvements

1.0.9 -> 1.1
* Added support for new MCUs from Intel R©: 8031, 8751, 8032, 8752, 80C31, 87C51, 80C52,
87C52, 80C32, 80C54, 87C54, 80C58, 87C58
* Added support for simulating virtual hardware
* Improved simulator (Implemented UART (experimental support), improved support for timers, etc.)
* Improved register watches
* Improved editor (improved autocompletion and many other things)
* Improved panel "Instruction details"
* Improved 8-segment editor
* Bug fixes in assembler, disassembler and simulator engine
* Some other bug fixes
* Added utility "Scribble notepad"
* Improved graph panel

103

1.0.7 -> 1.0.9
* Added support for C language
* Added map of bit addressable area

1.0.6 -> 1.0.7
* Added Stopwatch
* Improved code editor
* Some bug fixes

1.0.5 -> 1.0.6
* Fixed critical bug in Assembler v1.0.5 (related to peephole code optimization)
* Added 8 segment LED display editor
* Added ASCII chart
* Added Assembly symbol table viewer

1.0 -> 1.0.5
* Added support for external assemblers ("ASEM-51" and "ASL")
* Added support for external editors ("emacs", "gvim", "kwrite" and "gedit")
* Added support for embedded editors ("emacs", "vim", "nano", "dav" and "le")
* Added embedded terminal emulator (rxvt-unicode)
* Added function "File statistics"
* Improved assembler
* Added syntax highlight for code listing (*.lst)
* Added search bars for "Messages" and "Todo"
* Removed dependency on "tcl-thread" and "tclxml"
* Added dependency on "TkImg" and "tdom"
* Improved hex editor
* Improved simulator (especially simulation across multiple files)
* Added panel "Find in files"
* Modified GUI
* New error handling dialog
* Some bug fixes (especially critical bug in disassembler and a few bugs in assembler)
* All images are now in PNG (Portable Network Graphics) (Requires TkImg)
* Some more improvements

0.9.5 -> 1.0
* MANY BUG FIXES ! (including critical)
* Added support for some new MCUs (

AT89S52,AT89LS51,AT89LS52,AT89S8253,AT89S2051,AT89S4051,
T87C5101,T83C5101,T83C5102,TS80C32X2,TS80C52X2,TS87C52X2,
AT80C32X2,AT80C52X2,AT87C52X2,AT80C54X2,AT80C58X2,AT87C54X2,
AT87C58X2,TS80C54X2,TS80C58X2,TS87C54X2,TS87C58X2,TS80C31X2,
AT80C31X2

)
* Added support for peephole optimization
* Faster project opening
* Added interrupt monitor
* Added subprograms monitor
* Added SFR map
* Added SFR watches
* Extended command line interface
* Compiler now checks for valid memory addressing (new CLI options --iram-size, --eram-size,

--xram-size, --code-size)
* Added program hibernation capability
* Added editor commands hibernate, resume, switch-mcu, set-xcode and set-xdata
* Added desktop file and application icon
* Some more improvements

104 APPENDIX G. CHANGE LOG

0.9.1 -> 0.9.5
* Implemented support for 80C51, 8052, AT89C2051, AT89C4051, AT89C51, AT89C51RC, AT89C52,

AT89C55WD, AT89LV51, AT89LV52 and AT89LV55
* Simulator can now step back
* Added popup-based completion for editor
* Added tool tips for bits in simulator control panel
* Added simulator configuration dialog
* Added auto save function
* Manual page
* Added support for multi-view (editor can be now splitted vertically or horizontally)
* Many bug fixes (in compiler, editor, file selection dialog, syntax highlight, simulator, etc.)
* Some minor improvements (graph, disassembler, etc.)
* Thread extension is no longer required to run this program (but custom commands will won’t

work without it)

0.9.0 -> 0.9.1
* New hexadecimal editor
* New file selection dialog
* Added file system browser tab on left panel
* Added tips on start-up
* Added editor command line
* Improved editor configuration dialog
* A few bug fixes
* Removed dependency on IWidgets and Tix
* Some minor improvements

0.8.7 -> 0.9.0
* Implemented graph
* Many bug fixes (GUI, compiler, memory leaks)
* Editable shortcuts
* Bookmarks for opened and project files
* Search panels in left and right panel
* Modified GUI (checkboxes, radio buttons ...)
* Support for various encodings and EOLs
* Added "Tools" -> "Change letter case", "Normalize HEX" and "SIM -> BIN"
* Added editor functions "Lowercase", "Uppercase" and "Capitalize"
* Added help windows for opened and project files and opened projects
* Added pop-up menus for entry and text widgets (globally)
* Fixed problem with fonts (bad sizes)
* Implemented support for line wrapping (experimental)
* Added new command line options (see ‘mcu8051ide --help’)
* More status tips and tool tips
* Added welcome dialog
* Added demonstration project
* Cleaner, faster and safer compiler
* Some more minor improvements

0.8.5 -> 0.8.7
* Implemented code validation
* Added tab "Instruction details" (on the right panel)
* Added Clean Up dialog
* Added Right Panel configuration dialog
* Added Toolbar configuration dialog
* Added support for custom commands
* Fixed some bugs (in GUI)
* Fixed many memory leaks
* Cleaner code

0.8.4 -> 0.8.5

105

* Fixed many bugs in GUI
* Improved editor
* Extended calculator
* Redesigned editor configuration dialog
* Added functions "Tools -> Reformat code" and "Tools -> Sim2Hex"
* Extended CLI (--reset-user-settings, --config-file, --compile, --hex2bin ...)

0.8.1 -> 0.8.4
* Fixed many bugs ... (including critical)
* Added compiler configuration dialog
* Added calculator timers preset
* Added dialog about
* Added support for exporting highlighted source code to LaTeX source
* Added many ToolTips
* Added StatusBar tips
* Added splash screen
* Added support for command line options
* All images are now *.XPM (X PixMap) (require Tix package)
* Changed installation procedure

0.8.0 -> 0.8.1
* Fixed some bugs in compiler (not critical)
* Fixed bug in to do list (saving text as SGML)
* Fixed bug in project management
* Added pop-up menu to to do list

106 APPENDIX G. CHANGE LOG

107

List of Tables

1 Software requirements . 6

3.1 Available commands . 17
3.2 Data register watches: Register address 24
3.3 Symbol colors and icons in default settings 25
3.4 List of pseudo-variables . 32

4.1 Radix specifiers . 39
4.2 Expression operators . 39
4.3 Code addresses . 47
4.4 Plain numbers, these symbols are always defined! 47
4.5 Predefined SFR bit addresses . 47
4.6 Predefined SFR addresses . 48
4.7 Segment types . 49
4.8 Directives directly related to macros 52
4.9 Special instruction operands . 56
4.10 Instruction mnemonics . 56
4.11 Directives . 56
4.12 Expression operators . 56
4.13 Assembler controls . 56
4.14 Control sequences affecting code listing 59

D.1 8051 Instructions in numerical Order 90

E.1 8051 Instructions in lexical Order 96

108 LIST OF TABLES

109

List of Figures

1.1 i8051 micro-architecture . 12

2.1 MCU 8051 IDE with the demonstration project opened within it . 13
2.2 Project creation dialog . 14

3.1 Syntax validation configuration button 15
3.2 Spell checker configuration button 16
3.3 Syntax highlight, syntax validation and the pop-up based auto-

completion all in action . 16
3.4 Main panel of the simulator . 18
3.5 Highlighted SFR register . 18
3.6 Tool tip help for a special function bit 18
3.7 Representation of a register value in various numeric bases 18
3.8 GPIO Graph . 19
3.9 Messages panel . 19
3.10 Personal notes . 20
3.11 Calculator . 20
3.12 Embedded rxvt-unicode terminal emulator, with the Midnight Com-

mander running in it . 21
3.13 SFR watches . 22
3.14 Instruction details . 23
3.15 Data register watches . 23
3.16 Subprograms call monitor . 24
3.17 Map of the bit addressable area . 25
3.18 Stack monitor . 25
3.19 Symbol viewer . 26
3.20 ASCII chart . 26
3.21 8051 Instruction Table . 26
3.22 8-segment editor . 27
3.23 Base convertor . 28
3.24 UART/RS-232 debugger . 28
3.25 MCU code memory editor . 29
3.26 Interrupt monitor . 30

http://software.schmorp.de/pkg/rxvt-unicode.html
http://www.midnight-commander.org/
http://www.midnight-commander.org/

110 LIST OF FIGURES

3.27 Change letter case dialog . 32
3.28 Custom commands configuration dialog 33
3.29 Editor configuration dialog . 33
3.30 Main toolbar . 35
3.31 Global configuration dialog . 35

6.1 DS1620 simulator and its log window 65
6.2 PALE I/O interface . 65
6.3 LED Panel . 66
6.4 LED Display . 66
6.5 M LED Display . 66
6.6 LED Matrix . 67
6.7 Matrix Keypad . 67
6.8 Simple Keypad . 68
6.9 Simulated LCD display . 68
6.10 HD44780 Log . 68
6.11 CGRAM . 68
6.12 DDRAM . 68
6.13 View on CGROM . 68

7.1 An example of HW control plug-in 69
7.2 A basic example of a plug-in . 72

B.1 Assembler regression test run in terminal emulator 81

C.1 Official web page of the MCU 8051 IDE project 83

	Preface
	Goals of the project
	Requirements
	Intended Audience

	Brief introduction
	Main components of MCU 8051 IDE
	What is MCS-51
	What is the Assembly language

	Quick start
	Demonstration project
	Your first project in MCU 8051 IDE

	Detailed introduction to GUI
	Source code editor
	Syntax highlight and validation
	Spell checking
	Auto-completion
	Editor command line

	Bottom panel
	Main panel of the MCU simulator
	C variables
	Graph showing voltage levels
	Messages panel
	Notes
	Calculator
	Find in files
	Terminal emulator

	Left panel
	List of opened files
	List of project files
	SFR watches
	File system browser

	Right panel
	List of bookmarks
	List of breakpoints
	Instruction details
	Data register watches
	Subprograms call monitor
	List of symbols
	HW plug-ins manager

	Other tools
	SFR map
	Map of bit addressable area
	Stack monitor
	Symbol viewer
	ASCII chart
	8051 Instruction Table
	8-segment editor
	Stopwatch
	Scribble notepad
	Base converter
	RS-232 debugger
	Hexadecimal editors
	Hibernation of simulated program
	Interrupt monitor
	Conversions between *.hex, *.bin and *.adf files
	Normalization of source code indentation
	Change letter case
	User defined commands
	Clean-up project folder
	File statistic

	Configuration dialogues

	Build-in macro-assembler
	Statements
	Symbols
	Constants
	Expressions
	The instruction set processing
	Assembler directives
	Assembler Controls
	Predefined Symbols
	Segment type
	Conditional Assembly
	Macro Processing
	Reserved keywords
	Compatibility with ASEM-51
	List File Format
	Specification of Intel®8 HEX Format

	Disassembler
	MCU simulator
	Short introduction
	Modes of simulation
	Waring conditions
	Limitations
	Virtual hardware
	DS1620 temperature sensor
	File interface
	LED Panel
	Single LED Display
	Multiplexed LED Display
	LED Matrix
	Matrix Keypad
	Simple Keypad
	LCD display controlled by HD44780

	Writing hardware tool control plug-ins
	Foreword
	How to write your own plug-in
	Using MCU 8051 IDE API
	A basic example
	Random remarks

	Command Line Interface
	Translating the IDE into different languages
	License
	Regression testing
	Foreword
	More about the implementation

	Project web page and other media
	Official project web page
	Other media
	GIT repository

	8051 Instructions in numerical Order
	8051 Instructions in alphabetical order
	List of supported micro-controllers
	Intel®
	Atmel®

	Change log

