1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""Coordinate fitting and alignment --- :mod:`MDAnalysis.analysis.align`
=====================================================================
:Author: Oliver Beckstein, Joshua Adelman
:Year: 2010--2013
:Copyright: Lesser GNU Public License v2.1+
The module contains functions to fit a target structure to a reference
structure. They use the fast QCP algorithm to calculate the root mean
square distance (RMSD) between two coordinate sets [Theobald2005]_ and
the rotation matrix *R* that minimizes the RMSD [Liu2010]_. (Please
cite these references when using this module.).
Typically, one selects a group of atoms (such as the C-alphas),
calculates the RMSD and transformation matrix, and applys the
transformation to the current frame of a trajectory to obtain the
rotated structure. The :func:`alignto` and :class:`AlignTraj`
functions can be used to do this for individual frames and
trajectories respectively.
The :ref:`RMS-fitting-tutorial` shows how to do the individual steps
manually and explains the intermediate steps.
See Also
--------
:mod:`MDAnalysis.analysis.rms`
contains functions to compute RMSD (when structural alignment is not
required)
:mod:`MDAnalysis.lib.qcprot`
implements the fast RMSD algorithm.
.. _RMS-fitting-tutorial:
RMS-fitting tutorial
--------------------
The example uses files provided as part of the MDAnalysis test suite
(in the variables :data:`~MDAnalysis.tests.datafiles.PSF`,
:data:`~MDAnalysis.tests.datafiles.DCD`, and
:data:`~MDAnalysis.tests.datafiles.PDB_small`). For all further
examples execute first ::
>>> import MDAnalysis as mda
>>> from MDAnalysis.analysis import align
>>> from MDAnalysis.analysis.rms import rmsd
>>> from MDAnalysis.tests.datafiles import PSF, DCD, PDB_small
In the simplest case, we can simply calculate the C-alpha RMSD between
two structures, using :func:`rmsd`::
>>> ref = mda.Universe(PDB_small)
>>> mobile = mda.Universe(PSF, DCD)
>>> rmsd(mobile.select_atoms('name CA').positions, ref.select_atoms('name CA').positions)
28.20178579474479
Note that in this example translations have not been removed. In order
to look at the pure rotation one needs to superimpose the centres of
mass (or geometry) first::
>>> rmsd(mobile.select_atoms('name CA').positions, ref.select_atoms('name CA').positions, center=True)
21.892591663632704
This has only done a translational superposition. If you want to also do a
rotational superposition use the superposition keyword. This will calculate a
minimized RMSD between the reference and mobile structure::
>>> rmsd(mobile.select_atoms('name CA').positions, ref.select_atoms('name CA').positions,
... superposition=True)
6.809396586471815
The rotation matrix that superimposes *mobile* on *ref* while
minimizing the CA-RMSD is obtained with the :func:`rotation_matrix`
function ::
>>> mobile0 = mobile.select_atoms('name CA').positions - mobile.select_atoms('name CA').center_of_mass()
>>> ref0 = ref.select_atoms('name CA').positions - ref.select_atoms('name CA').center_of_mass()
>>> R, rmsd = align.rotation_matrix(mobile0, ref0)
>>> rmsd
6.809396586471805
>>> R
array([[ 0.14514539, -0.27259113, 0.95111876],
... [ 0.88652593, 0.46267112, -0.00268642],
... [-0.43932289, 0.84358136, 0.30881368]])
Putting all this together one can superimpose all of *mobile* onto *ref*::
>>> mobile.atoms.translate(-mobile.select_atoms('name CA').center_of_mass())
<AtomGroup with 3341 atoms>
>>> mobile.atoms.rotate(R)
<AtomGroup with 3341 atoms>
>>> mobile.atoms.translate(ref.select_atoms('name CA').center_of_mass())
<AtomGroup with 3341 atoms>
>>> mobile.atoms.write("mobile_on_ref.pdb")
Common usage
------------
To **fit a single structure** with :func:`alignto`::
>>> ref = mda.Universe(PSF, PDB_small)
>>> mobile = mda.Universe(PSF, DCD) # we use the first frame
>>> align.alignto(mobile, ref, select="protein and name CA", weights="mass")
(21.892591663632704, 6.809396586471809)
This will change *all* coordinates in *mobile* so that the protein
C-alpha atoms are optimally superimposed (translation and rotation).
To **fit a whole trajectory** to a reference structure with the
:class:`AlignTraj` class::
>>> ref = mda.Universe(PSF, PDB_small) # reference structure 1AKE
>>> trj = mda.Universe(PSF, DCD) # trajectory of change 1AKE->4AKE
>>> alignment = align.AlignTraj(trj, ref, filename='rmsfit.dcd')
>>> alignment.run()
<MDAnalysis.analysis.align.AlignTraj object at ...>
It is also possible to align two arbitrary structures by providing a
mapping between atoms based on a sequence alignment. This allows
fitting of structural homologs or wild type and mutant.
If a alignment was provided as "sequences.aln" one would first produce
the appropriate MDAnalysis selections with the :func:`fasta2select`
function and then feed the resulting dictionary to :class:`AlignTraj`::
>>> seldict = align.fasta2select('sequences.aln') # doctest: +SKIP
>>> alignment = align.AlignTraj(trj, ref, filename='rmsfit.dcd', select=seldict) # doctest: +SKIP
>>> alignment.run() # doctest: +SKIP
(See the documentation of the functions for this advanced usage.)
Functions and Classes
---------------------
.. versionchanged:: 0.10.0
Function :func:`~MDAnalysis.analysis.rms.rmsd` was removed from
this module and is now exclusively accessible as
:func:`~MDAnalysis.analysis.rms.rmsd`.
.. versionchanged:: 0.16.0
Function :func:`~MDAnalysis.analysis.align.rms_fit_trj` deprecated
in favor of :class:`AlignTraj` class.
.. versionchanged:: 0.17.0
removed deprecated :func:`~MDAnalysis.analysis.align.rms_fit_trj`
.. autofunction:: alignto
.. autoclass:: AlignTraj
.. autoclass:: AverageStructure
.. autofunction:: rotation_matrix
.. autofunction:: iterative_average
Helper functions
----------------
The following functions are used by the other functions in this
module. They are probably of more interest to developers than to
normal users.
.. autofunction:: _fit_to
.. autofunction:: fasta2select
.. autofunction:: sequence_alignment
.. autofunction:: get_matching_atoms
"""
import os.path
import warnings
import logging
import collections
import numpy as np
try:
import Bio.AlignIO
import Bio.Align
import Bio.Align.Applications
except ImportError:
HAS_BIOPYTHON = False
else:
HAS_BIOPYTHON = True
import MDAnalysis as mda
import MDAnalysis.lib.qcprot as qcp
from MDAnalysis.exceptions import SelectionError, SelectionWarning
import MDAnalysis.analysis.rms as rms
from MDAnalysis.coordinates.memory import MemoryReader
from MDAnalysis.lib.util import get_weights
from MDAnalysis.lib.util import deprecate # remove 3.0
from MDAnalysis.lib.log import ProgressBar
from ..due import due, Doi
from .base import AnalysisBase
logger = logging.getLogger("MDAnalysis.analysis.align")
def rotation_matrix(a, b, weights=None):
r"""Returns the 3x3 rotation matrix `R` for RMSD fitting coordinate
sets `a` and `b`.
The rotation matrix `R` transforms vector `a` to overlap with
vector `b` (i.e., `b` is the reference structure):
.. math::
\mathbf{b} = \mathsf{R} \cdot \mathbf{a}
Parameters
----------
a : array_like
coordinates that are to be rotated ("mobile set"); array of N atoms
of shape N*3 as generated by, e.g.,
:attr:`MDAnalysis.core.groups.AtomGroup.positions`.
b : array_like
reference coordinates; array of N atoms of shape N*3 as generated by,
e.g., :attr:`MDAnalysis.core.groups.AtomGroup.positions`.
weights : array_like (optional)
array of floats of size N for doing weighted RMSD fitting (e.g. the
masses of the atoms)
Returns
-------
R : ndarray
rotation matrix
rmsd : float
RMSD between `a` and `b` before rotation
``(R, rmsd)`` rmsd and rotation matrix *R*
Example
-------
`R` can be used as an argument for
:meth:`MDAnalysis.core.groups.AtomGroup.rotate` to generate a rotated
selection, e.g. ::
>>> from MDAnalysisTests.datafiles import TPR, TRR
>>> from MDAnalysis.analysis import align
>>> A = mda.Universe(TPR,TRR)
>>> B = A.copy()
>>> R = rotation_matrix(A.select_atoms('backbone').positions,
... B.select_atoms('backbone').positions)[0]
>>> A.atoms.rotate(R)
<AtomGroup with 47681 atoms>
>>> A.atoms.write("rotated.pdb")
Notes
-----
The function does *not* shift the centers of mass or geometry;
this needs to be done by the user.
See Also
--------
MDAnalysis.analysis.rms.rmsd: Calculates the RMSD between *a* and *b*.
alignto: A complete fit of two structures.
AlignTraj: Fit a whole trajectory.
"""
a = np.asarray(a, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
if a.shape != b.shape:
raise ValueError("'a' and 'b' must have same shape")
if np.allclose(a, b) and weights is None:
return np.eye(3, dtype=np.float64), 0.0
N = b.shape[0]
if weights is not None:
# qcp does NOT divide weights relative to the mean
weights = np.asarray(weights, dtype=np.float64) / np.mean(weights)
rot = np.zeros(9, dtype=np.float64)
# Need to transpose coordinates such that the coordinate array is
# 3xN instead of Nx3. Also qcp requires that the dtype be float64
# (I think we swapped the position of ref and traj in CalcRMSDRotationalMatrix
# so that R acts **to the left** and can be broadcasted; we're saving
# one transpose. [orbeckst])
rmsd = qcp.CalcRMSDRotationalMatrix(a, b, N, rot, weights)
return rot.reshape(3, 3), rmsd
def _fit_to(
mobile_coordinates,
ref_coordinates,
mobile_atoms,
mobile_com,
ref_com,
weights=None,
):
r"""Perform an rmsd-fitting to determine rotation matrix and align atoms
Parameters
----------
mobile_coordinates : ndarray
Coordinates of atoms to be aligned
ref_coordinates : ndarray
Coordinates of atoms to be fit against
mobile_atoms : AtomGroup
Atoms to be translated
mobile_com: ndarray
array of xyz coordinate of mobile center of mass
ref_com : ndarray
array of xyz coordinate of reference center of mass
weights : array_like (optional)
choose weights. With ``None`` weigh each atom equally. If a float array
of the same length as `mobile_coordinates` is provided, use each element
of the `array_like` as a weight for the corresponding atom in
`mobile_coordinates`.
Returns
-------
mobile_atoms : AtomGroup
AtomGroup of translated and rotated atoms
min_rmsd : float
Minimum rmsd of coordinates
Notes
-----
This function assumes that `mobile_coordinates` and `ref_coordinates` have
already been shifted so that their centers of geometry (or centers of mass,
depending on `weights`) coincide at the origin. `mobile_com` and `ref_com`
are the centers *before* this shift.
1. The rotation matrix :math:`\mathsf{R}` is determined with
:func:`rotation_matrix` directly from `mobile_coordinates` and
`ref_coordinates`.
2. `mobile_atoms` :math:`X` is rotated according to the
rotation matrix and the centers according to
.. math::
X' = \mathsf{R}(X - \bar{X}) + \bar{X}_{\text{ref}}
where :math:`\bar{X}` is the center.
"""
R, min_rmsd = rotation_matrix(
mobile_coordinates, ref_coordinates, weights=weights
)
mobile_atoms.translate(-mobile_com)
mobile_atoms.rotate(R)
mobile_atoms.translate(ref_com)
return mobile_atoms, min_rmsd
def alignto(
mobile,
reference,
select=None,
weights=None,
subselection=None,
tol_mass=0.1,
strict=False,
match_atoms=True,
):
"""Perform a spatial superposition by minimizing the RMSD.
Spatially align the group of atoms `mobile` to `reference` by
doing a RMSD fit on `select` atoms.
The superposition is done in the following way:
1. A rotation matrix is computed that minimizes the RMSD between
the coordinates of `mobile.select_atoms(sel1)` and
`reference.select_atoms(sel2)`; before the rotation, `mobile` is
translated so that its center of geometry (or center of mass)
coincides with the one of `reference`. (See below for explanation of
how *sel1* and *sel2* are derived from `select`.)
2. All atoms in :class:`~MDAnalysis.core.universe.Universe` that
contain `mobile` are shifted and rotated. (See below for how
to change this behavior through the `subselection` keyword.)
The `mobile` and `reference` atom groups can be constructed so that they
already match atom by atom. In this case, `select` should be set to "all"
(or ``None``) so that no further selections are applied to `mobile` and
`reference`, therefore preserving the exact atom ordering (see
:ref:`ordered-selections-label`).
.. Warning:: The atom order for `mobile` and `reference` is *only*
preserved when `select` is either "all" or ``None``. In any other case,
a new selection will be made that will sort the resulting AtomGroup by
index and therefore destroy the correspondence between the two groups.
**It is safest not to mix ordered AtomGroups with selection strings.**
Parameters
----------
mobile : Universe or AtomGroup
structure to be aligned, a
:class:`~MDAnalysis.core.groups.AtomGroup` or a whole
:class:`~MDAnalysis.core.universe.Universe`
reference : Universe or AtomGroup
reference structure, a :class:`~MDAnalysis.core.groups.AtomGroup`
or a whole :class:`~MDAnalysis.core.universe.Universe`
select : str or dict or tuple (optional)
The selection to operate on; can be one of:
1. any valid selection string for
:meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` that
produces identical selections in `mobile` and `reference`; or
2. a dictionary ``{'mobile': sel1, 'reference': sel2}`` where *sel1*
and *sel2* are valid selection strings that are applied to
`mobile` and `reference` respectively (the
:func:`MDAnalysis.analysis.align.fasta2select` function returns such
a dictionary based on a ClustalW_ or STAMP_ sequence alignment); or
3. a tuple ``(sel1, sel2)``
When using 2. or 3. with *sel1* and *sel2* then these selection strings
are applied to `atomgroup` and `reference` respectively and should
generate *groups of equivalent atoms*. *sel1* and *sel2* can each also
be a *list of selection strings* to generate a
:class:`~MDAnalysis.core.groups.AtomGroup` with defined atom order as
described under :ref:`ordered-selections-label`).
match_atoms : bool (optional)
Whether to match the mobile and reference atom-by-atom. Default ``True``.
weights : {"mass", ``None``} or array_like (optional)
choose weights. With ``"mass"`` uses masses as weights; with ``None``
weigh each atom equally. If a float array of the same length as
`mobile` is provided, use each element of the `array_like` as a
weight for the corresponding atom in `mobile`.
tol_mass: float (optional)
Reject match if the atomic masses for matched atoms differ by more than
`tol_mass`, default [0.1]
strict: bool (optional)
``True``
Will raise :exc:`SelectionError` if a single atom does not
match between the two selections.
``False`` [default]
Will try to prepare a matching selection by dropping
residues with non-matching atoms. See :func:`get_matching_atoms`
for details.
subselection : str or AtomGroup or None (optional)
Apply the transformation only to this selection.
``None`` [default]
Apply to ``mobile.universe.atoms`` (i.e., all atoms in the
context of the selection from `mobile` such as the rest of a
protein, ligands and the surrounding water)
*selection-string*
Apply to ``mobile.select_atoms(selection-string)``
:class:`~MDAnalysis.core.groups.AtomGroup`
Apply to the arbitrary group of atoms
Returns
-------
old_rmsd : float
RMSD before spatial alignment
new_rmsd : float
RMSD after spatial alignment
See Also
--------
AlignTraj: More efficient method for RMSD-fitting trajectories.
.. _ClustalW: http://www.clustal.org/
.. _STAMP: http://www.compbio.dundee.ac.uk/manuals/stamp.4.2/
.. versionchanged:: 1.0.0
Added *match_atoms* keyword to toggle atom matching.
.. versionchanged:: 0.8
Added check that the two groups describe the same atoms including
the new *tol_mass* keyword.
.. versionchanged:: 0.10.0
Uses :func:`get_matching_atoms` to work with incomplete selections
and new `strict` keyword. The new default is to be lenient whereas
the old behavior was the equivalent of ``strict = True``.
.. versionchanged:: 0.16.0
new general 'weights' kwarg replace `mass_weighted`, deprecated `mass_weighted`
.. deprecated:: 0.16.0
Instead of ``mass_weighted=True`` use new ``weights='mass'``
.. versionchanged:: 0.17.0
Deprecated keyword `mass_weighted` was removed.
"""
if select in ("all", None):
# keep the EXACT order in the input AtomGroups; select_atoms('all')
# orders them by index, which can lead to wrong results if the user
# has crafted mobile and reference to match atom by atom
mobile_atoms = mobile.atoms
ref_atoms = reference.atoms
else:
select = rms.process_selection(select)
mobile_atoms = mobile.select_atoms(*select["mobile"])
ref_atoms = reference.select_atoms(*select["reference"])
ref_atoms, mobile_atoms = get_matching_atoms(
ref_atoms,
mobile_atoms,
tol_mass=tol_mass,
strict=strict,
match_atoms=match_atoms,
)
weights = get_weights(ref_atoms, weights)
mobile_com = mobile_atoms.center(weights)
ref_com = ref_atoms.center(weights)
ref_coordinates = ref_atoms.positions - ref_com
mobile_coordinates = mobile_atoms.positions - mobile_com
old_rmsd = rms.rmsd(mobile_coordinates, ref_coordinates, weights)
if subselection is None:
# mobile_atoms is Universe
mobile_atoms = mobile.universe.atoms
elif isinstance(subselection, str):
# select mobile_atoms from string
mobile_atoms = mobile.select_atoms(subselection)
else:
try:
# treat subselection as AtomGroup
mobile_atoms = subselection.atoms
except AttributeError:
err = (
"subselection must be a selection string, an"
" AtomGroup or Universe or None"
)
raise TypeError(err) from None
# _fit_to DOES subtract center of mass, will provide proper min_rmsd
mobile_atoms, new_rmsd = _fit_to(
mobile_coordinates,
ref_coordinates,
mobile_atoms,
mobile_com,
ref_com,
weights=weights,
)
return old_rmsd, new_rmsd
@due.dcite(
Doi("10.1021/acs.jpcb.7b11988"),
description="Iterative Calculation of Opimal Reference",
path="MDAnalysis.analysis.align.iterative_average",
)
def iterative_average(
mobile,
reference=None,
select="all",
weights=None,
niter=100,
eps=1e-6,
verbose=False,
**kwargs,
):
"""Iteratively calculate an optimal reference that is also the average
structure after an RMSD alignment.
The optimal reference is defined as average
structure of a trajectory, with the optimal reference used as input.
This function computes the optimal reference by using a starting
reference for the average structure, which is used as the reference
to calculate the average structure again. This is repeated until the
reference structure has converged. :footcite:p:`Linke2018`
Parameters
----------
mobile : mda.Universe
Universe containing trajectory to be fitted to reference.
reference : mda.Universe (optional)
Universe containing the initial reference structure.
select : str or tuple or dict (optional)
Atom selection for fitting a substructue. Default is set to all.
Can be tuple or dict to define different selection strings for
mobile and target.
weights : str, array_like (optional)
Weights that can be used. If `None` use equal weights, if `'mass'`
use masses of ref as weights or give an array of arbitrary weights.
niter : int (optional)
Maximum number of iterations.
eps : float (optional)
RMSD distance at which reference and average are assumed to be
equal.
verbose : bool (optional)
Verbosity.
**kwargs : dict (optional)
AverageStructure kwargs.
Returns
-------
avg_struc : AverageStructure
AverageStructure result from the last iteration.
Example
-------
`iterative_average` can be used to obtain a :class:`MDAnalysis.Universe`
with the optimal reference structure.
::
import MDAnalysis as mda
from MDAnalysis.analysis import align
from MDAnalysisTests.datafiles import PSF, DCD
u = mda.Universe(PSF, DCD)
av = align.iterative_average(u, u, verbose=True)
averaged_universe = av.results.universe
References
----------
.. footbibliography::
.. versionadded:: 2.8.0
"""
if not reference:
reference = mobile
select = rms.process_selection(select)
ref = mda.Merge(reference.select_atoms(*select["reference"]))
sel_mobile = select["mobile"][0]
weights = get_weights(ref.atoms, weights)
drmsd = np.inf
for i in ProgressBar(range(niter)):
# found a converged structure
if drmsd < eps:
break
avg_struc = AverageStructure(
mobile,
reference=ref,
select={"mobile": sel_mobile, "reference": "all"},
weights=weights,
**kwargs,
).run()
drmsd = rms.rmsd(
ref.atoms.positions, avg_struc.results.positions, weights=weights
)
ref = avg_struc.results.universe
if verbose:
logger.debug(
f"iterative_average(): i = {i}, "
f"rmsd-change = {drmsd:.5f}, "
f"ave-rmsd = {avg_struc.results.rmsd:.5f}"
)
else:
errmsg = (
"iterative_average(): Did not converge in "
f"{niter} iterations to DRMSD < {eps}. "
f"Final average RMSD = {avg_struc.results.rmsd:.5f}"
)
logger.error(errmsg)
raise RuntimeError(errmsg)
logger.info(
f"iterative_average(): Converged to DRMSD < {eps}. "
f"Final average RMSD = {avg_struc.results.rmsd:.5f}"
)
return avg_struc
class AlignTraj(AnalysisBase):
"""RMS-align trajectory to a reference structure using a selection.
Both the reference `reference` and the trajectory `mobile` must be
:class:`MDAnalysis.Universe` instances. If they contain a trajectory then
it is used. The output file format is determined by the file extension of
`filename`. One can also use the same universe if one wants to fit to the
current frame.
.. versionchanged:: 1.0.0
``save()`` has now been removed, as an alternative use ``np.savetxt()``
on :attr:`results.rmsd`.
"""
def __init__(
self,
mobile,
reference,
select="all",
filename=None,
prefix="rmsfit_",
weights=None,
tol_mass=0.1,
match_atoms=True,
strict=False,
force=True,
in_memory=False,
writer_kwargs=None,
**kwargs,
):
"""Parameters
----------
mobile : Universe
Universe containing trajectory to be fitted to reference
reference : Universe
Universe containing trajectory frame to be used as reference
select : str (optional)
Set as default to all, is used for Universe.select_atoms to choose
subdomain to be fitted against
filename : str (optional)
Provide a filename for results to be written to
prefix : str (optional)
Provide a string to prepend to filename for results to be written
to
weights : {"mass", ``None``} or array_like (optional)
choose weights. With ``"mass"`` uses masses of `reference` as
weights; with ``None`` weigh each atom equally. If a float array of
the same length as the selection is provided, use each element of
the `array_like` as a weight for the corresponding atom in the
selection.
tol_mass : float (optional)
Tolerance given to `get_matching_atoms` to find appropriate atoms
match_atoms : bool (optional)
Whether to match the mobile and reference atom-by-atom. Default ``True``.
strict : bool (optional)
Force `get_matching_atoms` to fail if atoms can't be found using
exact methods
force : bool (optional)
Force overwrite of filename for rmsd-fitting
in_memory : bool (optional)
*Permanently* switch `mobile` to an in-memory trajectory
so that alignment can be done in-place, which can improve
performance substantially in some cases. In this case, no file
is written out (`filename` and `prefix` are ignored) and only
the coordinates of `mobile` are *changed in memory*.
verbose : bool (optional)
Set logger to show more information and show detailed progress of
the calculation if set to ``True``; the default is ``False``.
writer_kwargs : dict (optional)
kwarg dict to be passed to the constructed writer
Attributes
----------
reference_atoms : AtomGroup
Atoms of the reference structure to be aligned against
mobile_atoms : AtomGroup
Atoms inside each trajectory frame to be rmsd_aligned
results.rmsd : :class:`numpy.ndarray`
Array of the rmsd values of the least rmsd between the mobile_atoms
and reference_atoms after superposition and minimimization of rmsd
.. versionadded:: 2.0.0
rmsd : :class:`numpy.ndarray`
Alias to the :attr:`results.rmsd` attribute.
.. deprecated:: 2.0.0
Will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.rmsd` instead.
filename : str
String reflecting the filename of the file where the aligned
positions will be written to upon running RMSD alignment
Notes
-----
- If set to ``verbose=False``, it is recommended to wrap the statement
in a ``try ... finally`` to guarantee restoring of the log level in
the case of an exception.
- The ``in_memory`` option changes the `mobile` universe to an
in-memory representation (see :mod:`MDAnalysis.coordinates.memory`)
for the remainder of the Python session. If ``mobile.trajectory`` is
already a :class:`MemoryReader` then it is *always* treated as if
``in_memory`` had been set to ``True``.
.. versionchanged:: 1.0.0
Default ``filename`` has now been changed to the current directory.
.. deprecated:: 0.19.1
Default ``filename`` directory will change in 1.0 to the current directory.
.. versionchanged:: 0.16.0
new general ``weights`` kwarg replace ``mass_weights``
.. deprecated:: 0.16.0
Instead of ``mass_weighted=True`` use new ``weights='mass'``
.. versionchanged:: 0.17.0
removed deprecated `mass_weighted` keyword
.. versionchanged:: 1.0.0
Support for the ``start``, ``stop``, and ``step`` keywords has been
removed. These should instead be passed to :meth:`AlignTraj.run`.
.. versionchanged:: 2.0.0
:attr:`rmsd` results are now stored in a
:class:`MDAnalysis.analysis.base.Results` instance.
.. versionchanged:: 2.8.0
Added ``writer_kwargs`` kwarg dict to pass to the writer
"""
select = rms.process_selection(select)
self.ref_atoms = reference.select_atoms(*select["reference"])
self.mobile_atoms = mobile.select_atoms(*select["mobile"])
if in_memory or isinstance(mobile.trajectory, MemoryReader):
mobile.transfer_to_memory()
filename = None
logger.info("Moved mobile trajectory to in-memory representation")
else:
if filename is None:
fn = os.path.split(mobile.trajectory.filename)[1]
filename = prefix + fn
logger.info(
"filename of rms_align with no filename given"
": {0}".format(filename)
)
if os.path.exists(filename) and not force:
raise IOError(
"Filename already exists in path and force is not set"
" to True"
)
# do this after setting the memory reader to have a reference to the
# right reader.
super(AlignTraj, self).__init__(mobile.trajectory, **kwargs)
if not self._verbose:
logging.disable(logging.WARN)
# store reference to mobile atoms
self.mobile = mobile.atoms
self.filename = filename
natoms = self.mobile.n_atoms
self.ref_atoms, self.mobile_atoms = get_matching_atoms(
self.ref_atoms,
self.mobile_atoms,
tol_mass=tol_mass,
strict=strict,
match_atoms=match_atoms,
)
if writer_kwargs is None:
writer_kwargs = {}
# with self.filename == None (in_memory), the NullWriter is chosen
# (which just ignores input) and so only the in_memory trajectory is
# retained
self._writer = mda.Writer(self.filename, natoms, **writer_kwargs)
self._weights = get_weights(self.ref_atoms, weights)
logger.info("RMS-fitting on {0:d} atoms.".format(len(self.ref_atoms)))
def _prepare(self):
# reference centre of mass system
self._ref_com = self.ref_atoms.center(self._weights)
self._ref_coordinates = self.ref_atoms.positions - self._ref_com
# allocate the array for selection atom coords
self.results.rmsd = np.zeros((self.n_frames,))
def _single_frame(self):
index = self._frame_index
mobile_com = self.mobile_atoms.center(self._weights)
mobile_coordinates = self.mobile_atoms.positions - mobile_com
mobile_atoms, self.results.rmsd[index] = _fit_to(
mobile_coordinates,
self._ref_coordinates,
self.mobile,
mobile_com,
self._ref_com,
self._weights,
)
# write whole aligned input trajectory system
self._writer.write(mobile_atoms)
def _conclude(self):
self._writer.close()
if not self._verbose:
logging.disable(logging.NOTSET)
@property
def rmsd(self):
wmsg = (
"The `rmsd` attribute was deprecated in MDAnalysis 2.0.0 and "
"will be removed in MDAnalysis 3.0.0. Please use "
"`results.rmsd` instead."
)
warnings.warn(wmsg, DeprecationWarning)
return self.results.rmsd
class AverageStructure(AnalysisBase):
"""RMS-align trajectory to a reference structure using a selection,
and calculate the average coordinates of the trajectory.
Both the reference `reference` and the trajectory `mobile` must be
:class:`MDAnalysis.Universe` instances. If they contain a trajectory, then
it is used. You can also use the same universe if you want to fit to the
current frame.
The output file format is determined by the file extension of
`filename`.
Example
-------
::
import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import align
u = mda.Universe(PSF, DCD)
# align to the third frame and average structure
av = align.AverageStructure(u, ref_frame=3).run()
averaged_universe = av.results.universe
"""
def __init__(
self,
mobile,
reference=None,
select="all",
filename=None,
weights=None,
tol_mass=0.1,
match_atoms=True,
strict=False,
force=True,
in_memory=False,
ref_frame=0,
**kwargs,
):
"""Parameters
----------
mobile : Universe
Universe containing trajectory to be fitted to reference
reference : Universe (optional)
Universe containing trajectory frame to be used as reference
select : str (optional)
Set as default to all, is used for Universe.select_atoms to choose
subdomain to be fitted against
filename : str (optional)
Provide a filename for results to be written to
weights : {"mass", ``None``} or array_like (optional)
choose weights. With ``"mass"`` uses masses of `reference` as
weights; with ``None`` weigh each atom equally. If a float array of
the same length as the selection is provided, use each element of
the `array_like` as a weight for the corresponding atom in the
selection.
tol_mass : float (optional)
Tolerance given to `get_matching_atoms` to find appropriate atoms
match_atoms : bool (optional)
Whether to match the mobile and reference atom-by-atom. Default ``True``.
strict : bool (optional)
Force `get_matching_atoms` to fail if atoms can't be found using
exact methods
force : bool (optional)
Force overwrite of filename for rmsd-fitting
in_memory : bool (optional)
*Permanently* switch `mobile` to an in-memory trajectory
so that alignment can be done in-place, which can improve
performance substantially in some cases. In this case, no file
is written out (`filename` and `prefix` are ignored) and only
the coordinates of `mobile` are *changed in memory*.
ref_frame : int (optional)
frame index to select frame from `reference`
verbose : bool (optional)
Set logger to show more information and show detailed progress of
the calculation if set to ``True``; the default is ``False``.
Attributes
----------
reference_atoms : AtomGroup
Atoms of the reference structure to be aligned against
mobile_atoms : AtomGroup
Atoms inside each trajectory frame to be rmsd_aligned
results.universe : :class:`MDAnalysis.Universe`
New Universe with average positions
.. versionadded:: 2.0.0
universe : :class:`MDAnalysis.Universe`
Alias to the :attr:`results.universe` attribute.
.. deprecated:: 2.0.0
Will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.universe` instead.
results.positions : np.ndarray(dtype=float)
Average positions
.. versionadded:: 2.0.0
positions : np.ndarray(dtype=float)
Alias to the :attr:`results.positions` attribute.
.. deprecated:: 2.0.0
Will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.positions` instead.
results.rmsd : float
Average RMSD per frame
.. versionadded:: 2.0.0
rmsd : float
Alias to the :attr:`results.rmsd` attribute.
.. deprecated:: 2.0.0
Will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.rmsd` instead.
filename : str
String reflecting the filename of the file where the average
structure is written
Notes
-----
- If set to ``verbose=False``, it is recommended to wrap the statement
in a ``try ... finally`` to guarantee restoring of the log level in
the case of an exception.
- The ``in_memory`` option changes the `mobile` universe to an
in-memory representation (see :mod:`MDAnalysis.coordinates.memory`)
for the remainder of the Python session. If ``mobile.trajectory`` is
already a :class:`MemoryReader` then it is *always* treated as if
``in_memory`` had been set to ``True``.
.. versionadded:: 1.0.0
.. versionchanged:: 2.0.0
:attr:`universe`, :attr:`positions`, and :attr:`rmsd` are now
stored in a :class:`MDAnalysis.analysis.base.Results` instance.
"""
if in_memory or isinstance(mobile.trajectory, MemoryReader):
mobile.transfer_to_memory()
filename = None
logger.info("Moved mobile trajectory to in-memory representation")
# do this after setting the memory reader to have a reference to the
# right reader.
super(AverageStructure, self).__init__(mobile.trajectory, **kwargs)
if not self._verbose:
logging.disable(logging.WARN)
self.reference = reference if reference is not None else mobile
select = rms.process_selection(select)
self.ref_atoms = self.reference.select_atoms(*select["reference"])
self.mobile_atoms = mobile.select_atoms(*select["mobile"])
if len(self.ref_atoms) != len(self.mobile_atoms):
err = (
"Reference and trajectory atom selections do "
"not contain the same number of atoms: "
"N_ref={0:d}, N_traj={1:d}".format(
self.ref_atoms.n_atoms, self.mobile_atoms.n_atoms
)
)
logger.exception(err)
raise SelectionError(err)
logger.info(
"RMS calculation " "for {0:d} atoms.".format(len(self.ref_atoms))
)
# store reference to mobile atoms
self.mobile = mobile.atoms
self.ref_frame = ref_frame
self.filename = filename
self.results.universe = mda.Merge(self.mobile_atoms)
natoms = len(self.results.universe.atoms)
self.ref_atoms, self.mobile_atoms = get_matching_atoms(
self.ref_atoms,
self.mobile_atoms,
tol_mass=tol_mass,
strict=strict,
match_atoms=match_atoms,
)
# with self.filename == None (in_memory), the NullWriter is chosen
# (which just ignores input) and so only the in_memory trajectory is
# retained
self._writer = mda.Writer(self.filename, natoms)
self._weights = get_weights(self.ref_atoms, weights)
logger.info("RMS-fitting on {0:d} atoms.".format(len(self.ref_atoms)))
def _prepare(self):
current_frame = self.reference.universe.trajectory.ts.frame
try:
# Move to the ref_frame
# (coordinates MUST be stored in case the ref traj is advanced
# elsewhere or if ref == mobile universe)
self.reference.universe.trajectory[self.ref_frame]
self._ref_com = self.ref_atoms.center(self._weights)
# makes a copy
self._ref_coordinates = self.ref_atoms.positions - self._ref_com
self._ref_positions = self.ref_atoms.positions.copy()
finally:
# Move back to the original frame
self.reference.universe.trajectory[current_frame]
# allocate the array for selection atom coords
self.results.positions = np.zeros((len(self.mobile_atoms), 3))
self.results.rmsd = 0
def _single_frame(self):
mobile_com = self.mobile_atoms.center(self._weights)
mobile_coordinates = self.mobile_atoms.positions - mobile_com
self.results.rmsd += _fit_to(
mobile_coordinates,
self._ref_coordinates,
self.mobile,
mobile_com,
self._ref_com,
self._weights,
)[1]
self.results.positions += self.mobile_atoms.positions
def _conclude(self):
self.results.positions /= self.n_frames
self.results.rmsd /= self.n_frames
self.results.universe.load_new(
self.results.positions.reshape((1, -1, 3))
)
self._writer.write(self.results.universe.atoms)
self._writer.close()
if not self._verbose:
logging.disable(logging.NOTSET)
@property
def universe(self):
wmsg = (
"The `universe` attribute was deprecated in MDAnalysis 2.0.0 "
"and will be removed in MDAnalysis 3.0.0. Please use "
"`results.universe` instead."
)
warnings.warn(wmsg, DeprecationWarning)
return self.results.universe
@property
def positions(self):
wmsg = (
"The `positions` attribute was deprecated in MDAnalysis 2.0.0 "
"and will be removed in MDAnalysis 3.0.0. Please use "
"`results.positions` instead."
)
warnings.warn(wmsg, DeprecationWarning)
return self.results.positions
@property
def rmsd(self):
wmsg = (
"The `rmsd` attribute was deprecated in MDAnalysis 2.0.0 "
"and will be removed in MDAnalysis 3.0.0. Please use "
"`results.rmsd` instead."
)
warnings.warn(wmsg, DeprecationWarning)
return self.results.rmsd
@deprecate(
release="2.4.0",
remove="3.0",
message="See the documentation under Notes on how to directly use"
"Bio.Align.PairwiseAligner with ResidueGroups.",
)
def sequence_alignment(
mobile,
reference,
match_score=2,
mismatch_penalty=-1,
gap_penalty=-2,
gapextension_penalty=-0.1,
):
"""Generate a global sequence alignment between two residue groups.
The residues in `reference` and `mobile` will be globally aligned.
The global alignment uses the Needleman-Wunsch algorithm as
implemented in :mod:`Bio.Align.PairwiseAligner`. The parameters of the dynamic
programming algorithm can be tuned with the keywords. The defaults
should be suitable for two similar sequences. For sequences with
low sequence identity, more specialized tools such as clustalw,
muscle, tcoffee, or similar should be used.
Parameters
----------
mobile : AtomGroup
Atom group to be aligned
reference : AtomGroup
Atom group to be aligned against
match_score : float (optional), default 2
score for matching residues, default 2
mismatch_penalty : float (optional), default -1
penalty for residues that do not match , default : -1
gap_penalty : float (optional), default -2
penalty for opening a gap; the high default value creates compact
alignments for highly identical sequences but might not be suitable
for sequences with low identity, default : -2
gapextension_penalty : float (optional), default -0.1
penalty for extending a gap, default: -0.1
Returns
-------
alignment : tuple
Tuple of top sequence matching output `('Sequence A', 'Sequence B', score,
begin, end)`
Raises
------
ImportError
If optional dependency Biopython is not available.
Notes
-----
If you prefer to work directly with :mod:`Bio.Align` objects then you can
run your alignment with :class:`Bio.Alig.PairwiseAligner` as ::
import Bio.Align.PairwiseAligner
aligner = Bio.Align.PairwiseAligner(
mode="global",
match_score=match_score,
mismatch_score=mismatch_penalty,
open_gap_score=gap_penalty,
extend_gap_score=gapextension_penalty)
aln = aligner.align(reference.residues.sequence(format="Seq"),
mobile.residues.sequence(format="Seq"))
# choose top alignment with highest score
topalignment = aln[0]
The ``topalignment`` is a :class:`Bio.Align.PairwiseAlignment` instance
that can be used in your bioinformatics workflows.
See Also
--------
BioPython documentation for `PairwiseAligner`_. Alternatively, use
:func:`fasta2select` with :program:`clustalw2` and the option
``is_aligned=False``.
.. _`PairwiseAligner`:
https://biopython.org/docs/latest/api/Bio.Align.html#Bio.Align.PairwiseAligner
.. versionadded:: 0.10.0
.. versionchanged:: 2.4.0
Replace use of deprecated :func:`Bio.pairwise2.align.globalms` with
:class:`Bio.Align.PairwiseAligner`.
.. versionchanged:: 2.7.0
Biopython is now an optional dependency which this method requires.
"""
if not HAS_BIOPYTHON:
errmsg = (
"The `sequence_alignment` method requires an installation "
"of `Biopython`. Please install `Biopython` to use this "
"method: https://biopython.org/wiki/Download"
)
raise ImportError(errmsg)
aligner = Bio.Align.PairwiseAligner(
mode="global",
match_score=match_score,
mismatch_score=mismatch_penalty,
open_gap_score=gap_penalty,
extend_gap_score=gapextension_penalty,
)
aln = aligner.align(
reference.residues.sequence(format="Seq"),
mobile.residues.sequence(format="Seq"),
)
# choose top alignment with highest score
topalignment = aln[0]
# reconstruct the results tuple that used to be of type Bio.pairwise2.Alignment
AlignmentTuple = collections.namedtuple(
"Alignment", ["seqA", "seqB", "score", "start", "end"]
)
# start/stop are not particularly meaningful and there's no obvious way to
# get the old pairwise2 start/stop from the new PairwiseAligner output.
return AlignmentTuple(
topalignment[0],
topalignment[1],
topalignment.score,
0,
max(reference.n_residues, mobile.n_residues),
)
def fasta2select(
fastafilename,
is_aligned=False,
ref_resids=None,
target_resids=None,
ref_offset=0,
target_offset=0,
verbosity=3,
alnfilename=None,
treefilename=None,
clustalw="clustalw2",
):
"""Return selection strings that will select equivalent residues.
The function aligns two sequences provided in a FASTA file and
constructs MDAnalysis selection strings of the common atoms. When
these two strings are applied to the two different proteins they
will generate AtomGroups of the aligned residues.
`fastafilename` contains the two un-aligned sequences in FASTA
format. The reference is assumed to be the first sequence, the
target the second. ClustalW_ produces a pairwise
alignment (which is written to a file with suffix ``.aln``). The
output contains atom selection strings that select the same atoms
in the two structures.
Unless `ref_offset` and/or `target_offset` are specified, the resids
in the structure are assumed to correspond to the positions in the
un-aligned sequence, namely the first residue has resid == 1.
In more complicated cases (e.g., when the resid numbering in the
input structure has gaps due to missing parts), simply provide the
sequence of resids as they appear in the topology in `ref_resids` or
`target_resids`, e.g. ::
target_resids = [a.resid for a in trj.select_atoms('name CA')]
(This translation table *is* combined with any value for
`ref_offset` or `target_offset`!)
Parameters
----------
fastafilename : str, path to filename
FASTA file with first sequence as reference and
second the one to be aligned (ORDER IS IMPORTANT!)
is_aligned : bool (optional)
``False`` (default)
run clustalw for sequence alignment;
``True``
use the alignment in the file (e.g. from STAMP) [``False``]
ref_offset : int (optional)
add this number to the column number in the FASTA file
to get the original residue number, default: 0
target_offset : int (optional)
add this number to the column number in the FASTA file
to get the original residue number, default: 0
ref_resids : str (optional)
sequence of resids as they appear in the reference structure
target_resids : str (optional)
sequence of resids as they appear in the target
alnfilename : str (optional)
filename of ClustalW alignment (clustal format) that is
produced by *clustalw* when *is_aligned* = ``False``.
default ``None`` uses the name and path of *fastafilename* and
substitutes the suffix with '.aln'.
treefilename: str (optional)
filename of ClustalW guide tree (Newick format);
if default ``None`` the the filename is generated from *alnfilename*
with the suffix '.dnd' instead of '.aln'
clustalw : str (optional)
path to the ClustalW (or ClustalW2) binary; only
needed for `is_aligned` = ``False``, default: "ClustalW2"
Returns
-------
select_dict : dict
dictionary with 'reference' and 'mobile' selection string
that can be used immediately in :class:`AlignTraj` as
``select=select_dict``.
See Also
--------
:func:`sequence_alignment`, which does not require external
programs.
Raises
------
ImportError
If optional dependency Biopython is not available.
.. _ClustalW: http://www.clustal.org/
.. _STAMP: http://www.compbio.dundee.ac.uk/manuals/stamp.4.2/
.. versionchanged:: 1.0.0
Passing `alnfilename` or `treefilename` as `None` will create a file in
the current working directory.
.. versionchanged:: 2.7.0
Biopython is now an optional dependency which this method requires.
"""
if not HAS_BIOPYTHON:
errmsg = (
"The `fasta2select` method requires an installation "
"of `Biopython`. Please install `Biopython` to use this "
"method: https://biopython.org/wiki/Download"
)
raise ImportError(errmsg)
if is_aligned:
logger.info("Using provided alignment {}".format(fastafilename))
with open(fastafilename) as fasta:
alignment = Bio.AlignIO.read(fasta, "fasta")
else:
if alnfilename is None:
filepath, ext = os.path.splitext(fastafilename)
alnfilename = os.path.basename(filepath) + ".aln"
if treefilename is None:
filepath, ext = os.path.splitext(alnfilename)
treefilename = os.path.basename(filepath) + ".dnd"
run_clustalw = Bio.Align.Applications.ClustalwCommandline(
clustalw,
infile=fastafilename,
type="protein",
align=True,
outfile=alnfilename,
newtree=treefilename,
)
logger.debug(
"Aligning sequences in %(fastafilename)r with %(clustalw)r.",
vars(),
)
logger.debug("ClustalW commandline: %r", str(run_clustalw))
try:
stdout, stderr = run_clustalw()
except:
logger.exception("ClustalW %(clustalw)r failed", vars())
logger.info(
"(You can get clustalw2 from http://www.clustal.org/clustal2/)"
)
raise
with open(alnfilename) as aln:
alignment = Bio.AlignIO.read(aln, "clustal")
logger.info(
"Using clustalw sequence alignment {0!r}".format(alnfilename)
)
logger.info(
"ClustalW Newick guide tree was also produced: {0!r}".format(
treefilename
)
)
nseq = len(alignment)
if nseq != 2:
raise ValueError(
"Only two sequences in the alignment can be processed."
)
# implict assertion that we only have two sequences in the alignment
orig_resids = [ref_resids, target_resids]
offsets = [ref_offset, target_offset]
GAP = "-"
for iseq, a in enumerate(alignment):
# need iseq index to change orig_resids
if orig_resids[iseq] is None:
# build default: assume consecutive numbering of all
# residues in the alignment
length = len(a.seq) - a.seq.count(GAP)
orig_resids[iseq] = np.arange(1, length + 1)
else:
orig_resids[iseq] = np.asarray(orig_resids[iseq])
# add offsets to the sequence <--> resid translation table
seq2resids = [
resids + offset for resids, offset in zip(orig_resids, offsets)
]
del orig_resids
del offsets
def resid_factory(alignment, seq2resids):
"""Return a function that gives the resid for a position ipos in
the nseq'th alignment.
resid = resid_factory(alignment,seq2resids)
r = resid(nseq,ipos)
It is based on a look up table that translates position in the
alignment to the residue number in the original
sequence/structure.
The first index of resid() is the alignmment number, the
second the position in the alignment.
seq2resids translates the residues in the sequence to resid
numbers in the psf. In the simplest case this is a linear map
but if whole parts such as loops are ommitted from the protein
the seq2resids may have big gaps.
Format: a tuple of two numpy arrays; the first array is for
the reference, the second for the target, The index in each
array gives the consecutive number of the amino acid in the
sequence, the value the resid in the structure/psf.
Note: assumes that alignments have same length and are padded if
necessary.
"""
# could maybe use Bio.PDB.StructureAlignment instead?
nseq = len(alignment)
t = np.zeros((nseq, alignment.get_alignment_length()), dtype=int)
for iseq, a in enumerate(alignment):
GAP = "-"
t[iseq, :] = seq2resids[iseq][
np.cumsum(np.where(np.array(list(a.seq)) == GAP, 0, 1)) - 1
]
# -1 because seq2resid is index-1 based (resids start at 1)
def resid(nseq, ipos, t=t):
return t[nseq, ipos]
return resid
resid = resid_factory(alignment, seq2resids)
res_list = [] # collect individual selection string
# could collect just resid and type (with/without CB) and
# then post-process and use ranges for continuous stretches, eg
# ( resid 1:35 and ( backbone or name CB ) ) or ( resid 36 and backbone )
for ipos in range(alignment.get_alignment_length()):
aligned = list(alignment[:, ipos])
if GAP in aligned:
continue # skip residue
template = "resid %i"
if "G" not in aligned:
# can use CB
template += " and ( backbone or name CB )"
else:
template += " and backbone"
template = "( " + template + " )"
res_list.append([template % resid(iseq, ipos) for iseq in range(nseq)])
sel = np.array(res_list).transpose()
ref_selection = " or ".join(sel[0])
target_selection = " or ".join(sel[1])
return {"reference": ref_selection, "mobile": target_selection}
def get_matching_atoms(ag1, ag2, tol_mass=0.1, strict=False, match_atoms=True):
"""Return two atom groups with one-to-one matched atoms.
The function takes two :class:`~MDAnalysis.core.groups.AtomGroup`
instances `ag1` and `ag2` and returns two atom groups `g1` and `g2` that
consist of atoms so that the mass of atom ``g1[0]`` is the same as the mass
of atom ``g2[0]``, ``g1[1]`` and ``g2[1]`` etc.
The current implementation is very simplistic and works on a per-residue basis:
1. The two groups must contain the same number of residues.
2. Any residues in each group that have differing number of atoms are discarded.
3. The masses of corresponding atoms are compared. and if any masses differ
by more than `tol_mass` the test is considered failed and a
:exc:`SelectionError` is raised.
The log file (see :func:`MDAnalysis.start_logging`) will contain detailed
information about mismatches.
Parameters
----------
ag1 : AtomGroup
First :class:`~MDAnalysis.core.groups.AtomGroup` instance that is
compared
ag2 : AtomGroup
Second :class:`~MDAnalysis.core.groups.AtomGroup` instance that is
compared
tol_mass : float (optional)
Reject if the atomic masses for matched atoms differ by more than
`tol_mass` [0.1]
strict : bool (optional)
``True``
Will raise :exc:`SelectionError` if a single atom does not
match between the two selections.
``False`` [default]
Will try to prepare a matching selection by dropping
residues with non-matching atoms. See :func:`get_matching_atoms`
for details.
match_atoms : bool (optional)
``True``
Will attempt to match atoms based on mass
``False``
Will not attempt to match atoms based on mass
Returns
-------
(g1, g2) : tuple
Tuple with :class:`~MDAnalysis.core.groups.AtomGroup`
instances that match, atom by atom. The groups are either the
original groups if all matched or slices of the original
groups.
Raises
------
:exc:`SelectionError`
Error raised if the number of residues does not match or if in the final
matching masses differ by more than *tol*.
Notes
-----
The algorithm could be improved by using e.g. the Needleman-Wunsch
algorithm in :mod:`Bio.profile2` to align atoms in each residue (doing a
global alignment is too expensive).
.. versionadded:: 0.8
.. versionchanged:: 0.10.0
Renamed from :func:`check_same_atoms` to
:func:`get_matching_atoms` and now returns matching atomgroups
(possibly with residues removed)
"""
if ag1.n_atoms != ag2.n_atoms:
if not match_atoms:
errmsg = (
"Mobile and reference atom selections do not "
"contain the same number of atoms and atom "
"matching is turned off. To match atoms based "
"on residue and mass, try match_atoms=True"
)
logger.error(errmsg)
raise SelectionError(errmsg)
if ag1.n_residues != ag2.n_residues:
errmsg = (
"Reference and trajectory atom selections do not contain "
"the same number of atoms: \n"
"atoms: N_ref={0}, N_traj={1}\n"
"and also not the same number of residues:\n"
"residues: N_ref={2}, N_traj={3}"
).format(ag1.n_atoms, ag2.n_atoms, ag1.n_residues, ag2.n_residues)
logger.error(errmsg)
raise SelectionError(errmsg)
else:
msg = (
"Reference and trajectory atom selections do not contain "
"the same number of atoms: \n"
"atoms: N_ref={0}, N_traj={1}"
).format(ag1.n_atoms, ag2.n_atoms)
if strict:
logger.error(msg)
raise SelectionError(msg)
# continue with trying to create a valid selection
msg += (
"\nbut we attempt to create a valid selection "
+ "(use strict=True to disable this heuristic)."
)
logger.info(msg)
warnings.warn(msg, category=SelectionWarning)
# continue with trying to salvage the selection:
# - number of atoms is different
# - number of residues is the same
# We will remove residues with mismatching number of atoms (e.g. not resolved
# in an X-ray structure)
assert ag1.n_residues == ag2.n_residues
# Alternatively, we could align all atoms but Needleman-Wunsch
# pairwise2 consumes too much memory for thousands of characters in
# each sequence. Perhaps a solution would be pairwise alignment per residue.
#
# aln_elem = Bio.pairwise2.align.globalms("".join([MDAnalysis.topology.
# core.guess_atom_element(n) for n in gref.atoms.names]),
# "".join([MDAnalysis.topology.core.guess_atom_element(n)
# for n in models[0].atoms.names]),
# 2, -1, -1, -0.1,
# one_alignment_only=True)
# For now, just remove the residues that don't have matching numbers
# NOTE: This can create empty selections, e.g., when comparing a structure
# with hydrogens to a PDB structure without hydrogens.
rsize1 = np.array([r.atoms.n_atoms for r in ag1.residues])
rsize2 = np.array([r.atoms.n_atoms for r in ag2.residues])
rsize_mismatches = np.absolute(rsize1 - rsize2)
mismatch_mask = rsize_mismatches > 0
if np.any(mismatch_mask):
def get_atoms_byres(g, match_mask=None):
# not pretty... but need to do things on a per-atom basis in
# order to preserve original selection
if match_mask is None:
match_mask = np.logical_not(mismatch_mask)
ag = g.atoms
good = ag.residues.resids[match_mask] # resid for each residue
resids = ag.resids # resid for each atom
# boolean array for all matching atoms
ix_good = np.isin(resids, good)
return ag[ix_good]
_ag1 = get_atoms_byres(ag1)
_ag2 = get_atoms_byres(ag2)
assert _ag1.atoms.n_atoms == _ag2.atoms.n_atoms
# diagnostics
mismatch_resindex = np.arange(ag1.n_residues)[mismatch_mask]
logger.warning(
"Removed {0} residues with non-matching numbers of atoms".format(
mismatch_mask.sum()
)
)
logger.debug(
"Removed residue ids: group 1: {0}".format(
ag1.residues.resids[mismatch_resindex]
)
)
logger.debug(
"Removed residue ids: group 2: {0}".format(
ag2.residues.resids[mismatch_resindex]
)
)
# replace after logging (still need old ag1 and ag2 for
# diagnostics)
ag1 = _ag1
ag2 = _ag2
del _ag1, _ag2
# stop if we created empty selections (by removing ALL residues...)
if ag1.n_atoms == 0 or ag2.n_atoms == 0:
errmsg = (
"Failed to automatically find matching atoms: created empty selections. "
"Try to improve your selections for mobile and reference."
)
logger.error(errmsg)
raise SelectionError(errmsg)
if match_atoms:
# check again because the residue matching heuristic is not very
# good and can easily be misled (e.g., when one of the selections
# had fewer atoms but the residues in mobile and reference have
# each the same number)
if not hasattr(ag1, "masses") or not hasattr(ag2, "masses"):
msg = "Atoms could not be matched since they don't contain masses."
logger.info(msg)
warnings.warn(msg, category=SelectionWarning)
else:
try:
mass_mismatches = (
np.absolute(ag1.masses - ag2.masses) > tol_mass
)
except ValueError:
errmsg = (
"Failed to find matching atoms: len(reference) = {}, len(mobile) = {} "
"Try to improve your selections for mobile and reference."
).format(ag1.n_atoms, ag2.n_atoms)
logger.error(errmsg)
raise SelectionError(errmsg) from None
if np.any(mass_mismatches):
# Test 2 failed.
# diagnostic output:
logger.error("Atoms: reference | trajectory")
for ar, at in zip(ag1[mass_mismatches], ag2[mass_mismatches]):
logger.error(
"{0!s:>4} {1:3d} {2!s:>3} {3!s:>3} {4:6.3f} | {5!s:>4} {6:3d} {7!s:>3} {8!s:>3} {9:6.3f}".format(
ar.segid,
ar.resid,
ar.resname,
ar.name,
ar.mass,
at.segid,
at.resid,
at.resname,
at.name,
at.mass,
)
)
errmsg = (
"Inconsistent selections, masses differ by more than {0}; "
"mis-matching atoms are shown above."
).format(tol_mass)
logger.error(errmsg)
raise SelectionError(errmsg)
return ag1, ag2
|