1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
"""Analysis backends --- :mod:`MDAnalysis.analysis.backends`
============================================================
.. versionadded:: 2.8.0
The :mod:`backends` module provides :class:`BackendBase` base class to
implement custom execution backends for
:meth:`MDAnalysis.analysis.base.AnalysisBase.run` and its
subclasses.
.. SeeAlso:: :ref:`parallel-analysis`
.. _backends:
Backends
--------
Three built-in backend classes are provided:
* *serial*: :class:`BackendSerial`, that is equivalent to using no
parallelization and is the default
* *multiprocessing*: :class:`BackendMultiprocessing` that supports
parallelization via standard Python :mod:`multiprocessing` module
and uses default :mod:`pickle` serialization
* *dask*: :class:`BackendDask`, that uses the same process-based
parallelization as :class:`BackendMultiprocessing`, but different
serialization algorithm via `dask <https://dask.org/>`_ (see `dask
serialization algorithms
<https://distributed.dask.org/en/latest/serialization.html>`_ for details)
Classes
-------
"""
import warnings
from typing import Callable
from MDAnalysis.lib.util import is_installed
class BackendBase:
"""Base class for backend implementation.
Initializes an instance and performs checks for its validity, such as
``n_workers`` and possibly other ones.
Parameters
----------
n_workers : int
number of workers (usually, processes) over which the work is split
Examples
--------
.. code-block:: python
from MDAnalysis.analysis.backends import BackendBase
class ThreadsBackend(BackendBase):
def apply(self, func, computations):
from multiprocessing.dummy import Pool
with Pool(processes=self.n_workers) as pool:
results = pool.map(func, computations)
return results
import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis.rms import RMSD
u = mda.Universe(PSF, DCD)
ref = mda.Universe(PSF, DCD)
R = RMSD(u, ref)
n_workers = 2
backend = ThreadsBackend(n_workers=n_workers)
R.run(backend=backend, unsupported_backend=True)
.. warning::
Using `ThreadsBackend` above will lead to erroneous results, since it
is an educational example. Do not use it for real analysis.
.. versionadded:: 2.8.0
"""
def __init__(self, n_workers: int):
self.n_workers = n_workers
self._validate()
def _get_checks(self):
"""Get dictionary with ``condition: error_message`` pairs that ensure the
validity of the backend instance
Returns
-------
dict
dictionary with ``condition: error_message`` pairs that will get
checked during ``_validate()`` run
"""
return {
isinstance(self.n_workers, int)
and self.n_workers
> 0: f"n_workers should be positive integer, got {self.n_workers=}",
}
def _get_warnings(self):
"""Get dictionary with ``condition: warning_message`` pairs that ensure
the good usage of the backend instance
Returns
-------
dict
dictionary with ``condition: warning_message`` pairs that will get
checked during ``_validate()`` run
"""
return dict()
def _validate(self):
"""Check correctness (e.g. ``dask`` is installed if using ``backend='dask'``)
and good usage (e.g. ``n_workers=1`` if backend is serial) of the backend
Raises
------
ValueError
if one of the conditions in :meth:`_get_checks` is ``True``
"""
for check, msg in self._get_checks().items():
if not check:
raise ValueError(msg)
for check, msg in self._get_warnings().items():
if not check:
warnings.warn(msg)
def apply(self, func: Callable, computations: list) -> list:
"""map function `func` to all tasks in the `computations` list
Main method that will get called when using an instance of
``BackendBase``. It is equivalent to running ``[func(item) for item in
computations]`` while using the parallel backend capabilities.
Parameters
----------
func : Callable
function to be called on each of the tasks in computations list
computations : list
computation tasks to apply function to
Returns
-------
list
list of results of the function
"""
raise NotImplementedError
class BackendSerial(BackendBase):
"""A built-in backend that does serial execution of the function, without any
parallelization.
Parameters
----------
n_workers : int
Is ignored in this class, and if ``n_workers`` > 1, a warning will be
given.
.. versionadded:: 2.8.0
"""
def _get_warnings(self):
"""Get dictionary with ``condition: warning_message`` pairs that ensure
the good usage of the backend instance. Here, it checks if the number
of workers is not 1, otherwise gives warning.
Returns
-------
dict
dictionary with ``condition: warning_message`` pairs that will get
checked during ``_validate()`` run
"""
return {
self.n_workers
== 1: "n_workers is ignored when executing with backend='serial'"
}
def apply(self, func: Callable, computations: list) -> list:
"""
Serially applies `func` to each task object in ``computations``.
Parameters
----------
func : Callable
function to be called on each of the tasks in computations list
computations : list
computation tasks to apply function to
Returns
-------
list
list of results of the function
"""
return [func(task) for task in computations]
class BackendMultiprocessing(BackendBase):
"""A built-in backend that executes a given function using the
:meth:`multiprocessing.Pool.map <multiprocessing.pool.Pool.map>` method.
Parameters
----------
n_workers : int
number of processes in :class:`multiprocessing.Pool
<multiprocessing.pool.Pool>` to distribute the workload
between. Must be a positive integer.
Examples
--------
.. code-block:: python
from MDAnalysis.analysis.backends import BackendMultiprocessing
import multiprocessing as mp
backend_obj = BackendMultiprocessing(n_workers=mp.cpu_count())
.. versionadded:: 2.8.0
"""
def apply(self, func: Callable, computations: list) -> list:
"""Applies `func` to each object in ``computations`` using `multiprocessing`'s `Pool.map`.
Parameters
----------
func : Callable
function to be called on each of the tasks in computations list
computations : list
computation tasks to apply function to
Returns
-------
list
list of results of the function
"""
from multiprocessing import Pool
with Pool(processes=self.n_workers) as pool:
results = pool.map(func, computations)
return results
class BackendDask(BackendBase):
"""A built-in backend that executes a given function with *dask*.
Execution is performed with the :func:`dask.compute` function of
:class:`dask.delayed.Delayed` object (created with
:func:`dask.delayed.delayed`) with ``scheduler='processes'`` and
``chunksize=1`` (this ensures uniform distribution of tasks among
processes). Requires the `dask package <https://docs.dask.org/en/stable/>`_
to be `installed <https://docs.dask.org/en/stable/install.html>`_.
Parameters
----------
n_workers : int
number of processes in to distribute the workload
between. Must be a positive integer. Workers are actually
:class:`multiprocessing.pool.Pool` processes, but they use a different and
more flexible `serialization protocol
<https://docs.dask.org/en/stable/phases-of-computation.html#graph-serialization>`_.
Examples
--------
.. code-block:: python
from MDAnalysis.analysis.backends import BackendDask
import multiprocessing as mp
backend_obj = BackendDask(n_workers=mp.cpu_count())
.. versionadded:: 2.8.0
"""
def apply(self, func: Callable, computations: list) -> list:
"""Applies `func` to each object in ``computations``.
Parameters
----------
func : Callable
function to be called on each of the tasks in computations list
computations : list
computation tasks to apply function to
Returns
-------
list
list of results of the function
"""
from dask.delayed import delayed
import dask
computations = [delayed(func)(task) for task in computations]
results = dask.compute(
computations,
scheduler="processes",
chunksize=1,
num_workers=self.n_workers,
)[0]
return results
def _get_checks(self):
"""Get dictionary with ``condition: error_message`` pairs that ensure the
validity of the backend instance. Here checks if ``dask`` module is
installed in the environment.
Returns
-------
dict
dictionary with ``condition: error_message`` pairs that will get
checked during ``_validate()`` run
"""
base_checks = super()._get_checks()
checks = {
is_installed("dask"): (
"module 'dask' is missing. Please install 'dask': "
"https://docs.dask.org/en/stable/install.html"
)
}
return base_checks | checks
|