1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
r"""Bond-Angle-Torsion coordinates analysis --- :mod:`MDAnalysis.analysis.bat`
===========================================================================
:Author: Soohaeng Yoo Willow and David Minh
:Year: 2020
:Copyright: Lesser GNU Public License, v2.1 or any higher version
.. versionadded:: 2.0.0
This module contains classes for interconverting between Cartesian and an
internal coordinate system, Bond-Angle-Torsion (BAT) coordinates
:footcite:p:`Chang2003`, for a given set of atoms or residues. This coordinate
system is designed to be complete, non-redundant, and minimize correlations
between degrees of freedom. Complete and non-redundant means that for N atoms
there will be 3N Cartesian coordinates and 3N BAT coordinates. Correlations are
minimized by using improper torsions, as described in :footcite:p:`Hikiri2016`.
More specifically, bond refers to the bond length, or distance between
a pair of bonded atoms. Angle refers to the bond angle, the angle between
a pair of bonds to a central atom. Torsion refers to the torsion angle.
For a set of four atoms a, b, c, and d, a torsion requires bonds between
a and b, b and c, and c and d. The torsion is the angle between a plane
containing atoms a, b, and c and another plane containing b, c, and d.
For a set of torsions that share atoms b and c, one torsion is defined as
the primary torsion. The others are defined as improper torsions, differences
between the raw torsion angle and the primary torsion. This definition reduces
the correlation between the torsion angles.
Each molecule also has six external coordinates that define its translation and
rotation in space. The three Cartesian coordinates of the first atom are the
molecule's translational degrees of freedom. Rotational degrees of freedom are
specified by the axis-angle convention. The rotation axis is a normalized vector
pointing from the first to second atom. It is described by the polar angle,
:math:`\phi`, and azimuthal angle, :math:`\theta`. :math:`\omega` is a third angle
that describes the rotation of the third atom about the axis.
This module was adapted from AlGDock :footcite:p:`Minh2020`.
See Also
--------
:class:`~MDAnalysis.analysis.dihedrals.Dihedral`
class to calculate dihedral angles for a given set of atoms or residues
:func:`MDAnalysis.lib.distances.calc_dihedrals()`
function to calculate dihedral angles from atom positions
Example applications
--------------------
The :class:`~MDAnalysis.analysis.bat.BAT` class defines bond-angle-torsion
coordinates based on the topology of an atom group and interconverts between
Cartesian and BAT coordinate systems.
For example, we can determine internal coordinates for residues 5-10
of adenylate kinase (AdK). The trajectory is included within the test data files::
import MDAnalysis as mda
from MDAnalysisTests.datafiles import PSF, DCD
import numpy as np
u = mda.Universe(PSF, DCD)
# selection of atomgroups
selected_residues = u.select_atoms("resid 5-10")
from MDAnalysis.analysis.bat import BAT
R = BAT(selected_residues)
# Calculate BAT coordinates for a trajectory
R.run()
After :meth:`R.run()<BAT.run>`, the coordinates can be accessed with
:attr:`R.results.bat<BAT.bat>`. The following code snippets assume that the
previous snippet has been executed.
Reconstruct Cartesian coordinates for the first frame::
# Reconstruct Cartesian coordinates from BAT coordinates
# of the first frame
XYZ = R.Cartesian(R.results.bat[0,:])
# The original and reconstructed Cartesian coordinates should all be close
print(np.allclose(XYZ, selected_residues.positions, atol=1e-6))
Change a single torsion angle by :math:`\pi`::
bat = R.results.bat[0,:]
bat[bat.shape[0]-12] += np.pi
XYZ = R.Cartesian(bat)
# A good number of Cartesian coordinates should have been modified
np.sum((XYZ - selected_residues.positions)>1E-5)
Store data to the disk and load it again::
# BAT coordinates can be saved to disk in the numpy binary format
R.save('test.npy')
# The BAT coordinates in a new BAT instance can be loaded from disk
# instead of using the run() method.
Rnew = BAT(selected_residues, filename='test.npy')
# The BAT coordinates before and after disk I/O should be close
print(np.allclose(Rnew.results.bat, R.results.bat))
Analysis classes
----------------
.. autoclass:: BAT
:members:
:inherited-members:
.. attribute:: results.bat
Contains the time series of the Bond-Angle-Torsion coordinates as a
(nframes, 3N) :class:`numpy.ndarray` array. Each row corresponds to
a frame in the trajectory. In each column, the first six elements
describe external degrees of freedom. The first three are the center
of mass of the initial atom. The next three specify the external angles
according to the axis-angle convention: :math:`\phi`, the polar angle,
:math:`\theta`, the azimuthal angle, and :math:`\omega`, a third angle
that describes the rotation of the third atom about the axis. The next
three degrees of freedom are internal degrees of freedom for the root
atoms: :math:`r_{01}`, the distance between atoms 0 and 1,
:math:`r_{12}`, the distance between atoms 1 and 2,
and :math:`a_{012}`, the angle between the three atoms.
The rest of the array consists of all the other bond distances,
all the other bond angles, and then all the other torsion angles.
References
----------
.. footbibliography::
"""
import logging
import warnings
import numpy as np
import copy
import MDAnalysis as mda
from .base import AnalysisBase, ResultsGroup
from MDAnalysis.lib.distances import calc_bonds, calc_angles, calc_dihedrals
from MDAnalysis.lib.mdamath import make_whole
from ..due import due, Doi
logger = logging.getLogger(__name__)
def _sort_atoms_by_mass(atoms, reverse=False):
r"""Sorts a list of atoms by mass and then by index
The atom index is used as a tiebreaker so that the ordering is reproducible.
Parameters
----------
ag_o : list of Atoms
List to sort
reverse : bool
Atoms will be in descending order
Returns
-------
ag_n : list of Atoms
Sorted list
"""
return sorted(atoms, key=lambda a: (a.mass, a.index), reverse=reverse)
def _find_torsions(root, atoms):
"""Constructs a list of torsion angles
Parameters
----------
root : AtomGroup
First three atoms in the coordinate system
atoms : AtomGroup
Atoms that are allowed to be part of the torsion angle
Returns
-------
torsions : list of AtomGroup
list of AtomGroup objects that define torsion angles
"""
torsions = []
selected_atoms = list(root)
while len(selected_atoms) < len(atoms):
torsionAdded = False
for a1 in selected_atoms:
# Find a0, which is a new atom connected to the selected atom
a0_list = _sort_atoms_by_mass(
a
for a in a1.bonded_atoms
if (a in atoms) and (a not in selected_atoms)
)
for a0 in a0_list:
# Find a2, which is connected to a1, is not a terminal atom,
# and has been selected
a2_list = _sort_atoms_by_mass(
a
for a in a1.bonded_atoms
if (a != a0)
and len(a.bonded_atoms) > 1
and (a in atoms)
and (a in selected_atoms)
)
for a2 in a2_list:
# Find a3, which is
# connected to a2, has been selected, and is not a1
a3_list = _sort_atoms_by_mass(
a
for a in a2.bonded_atoms
if (a != a1) and (a in atoms) and (a in selected_atoms)
)
for a3 in a3_list:
# Add the torsion to the list of torsions
torsions.append(mda.AtomGroup([a0, a1, a2, a3]))
# Add the new atom to selected_atoms
# which extends the loop
selected_atoms.append(a0)
torsionAdded = True
break # out of the a3 loop
break # out of the a2 loop
if torsionAdded is False:
print("Selected atoms:")
print([a.index + 1 for a in selected_atoms])
print("Torsions found:")
print([list(t.indices + 1) for t in torsions])
raise ValueError("Additional torsions not found.")
return torsions
class BAT(AnalysisBase):
"""Calculate BAT coordinates for the specified AtomGroup.
Bond-Angle-Torsions (BAT) internal coordinates will be computed for
the group of atoms and all frame in the trajectory belonging to `ag`.
.. versionchanged:: 2.8.0
Enabled **parallel execution** with the ``multiprocessing`` and ``dask``
backends; use the new method :meth:`get_supported_backends` to see all
supported backends.
"""
_analysis_algorithm_is_parallelizable = True
@classmethod
def get_supported_backends(cls):
return (
"serial",
"multiprocessing",
"dask",
)
@due.dcite(
Doi("10.1002/jcc.26036"),
description="Bond-Angle-Torsions Coordinate Transformation",
path="MDAnalysis.analysis.bat.BAT",
)
def __init__(self, ag, initial_atom=None, filename=None, **kwargs):
r"""Parameters
----------
ag : AtomGroup or Universe
Group of atoms for which the BAT coordinates are calculated.
`ag` must have a bonds attribute.
If unavailable, bonds may be guessed using
:meth:`AtomGroup.guess_bonds <MDAnalysis.core.groups.AtomGroup.guess_bonds>`.
`ag` must only include one molecule.
If a trajectory is associated with the atoms, then the computation
iterates over the trajectory.
initial_atom : :class:`Atom <MDAnalysis.core.groups.Atom>`
The atom whose Cartesian coordinates define the translation
of the molecule. If not specified, the heaviest terminal atom
will be selected.
filename : str
Name of a numpy binary file containing a saved bat array.
If filename is not ``None``, the data will be loaded from this file
instead of being recalculated using the run() method.
Raises
------
AttributeError
If `ag` does not contain a bonds attribute
ValueError
If `ag` contains more than one molecule
"""
super(BAT, self).__init__(ag.universe.trajectory, **kwargs)
self._ag = ag
# Check that the ag contains bonds
if not hasattr(self._ag, "bonds"):
raise AttributeError("AtomGroup has no attribute bonds")
if len(self._ag.fragments) > 1:
raise ValueError("AtomGroup has more than one molecule")
# Determine the root
# The initial atom must be a terminal atom
terminal_atoms = _sort_atoms_by_mass(
[a for a in self._ag.atoms if len(a.bonds) == 1], reverse=True
)
if initial_atom is None:
# Select the heaviest root atoms from the heaviest terminal atom
initial_atom = terminal_atoms[0]
elif not initial_atom in terminal_atoms:
raise ValueError("Initial atom is not a terminal atom")
# The next atom in the root is bonded to the initial atom
# Since the initial atom is a terminal atom, there is only
# one bonded atom
second_atom = initial_atom.bonded_atoms[0]
# The last atom in the root is the heaviest atom
# bonded to the second atom
# If there are more than three atoms,
# then the last atom cannot be a terminal atom.
if self._ag.n_atoms != 3:
third_atom = _sort_atoms_by_mass(
[
a
for a in second_atom.bonded_atoms
if (a in self._ag)
and (a != initial_atom)
and (a not in terminal_atoms)
],
reverse=True,
)[0]
else:
third_atom = _sort_atoms_by_mass(
[
a
for a in second_atom.bonded_atoms
if (a in self._ag) and (a != initial_atom)
],
reverse=True,
)[0]
self._root = mda.AtomGroup([initial_atom, second_atom, third_atom])
# Construct a list of torsion angles
self._torsions = _find_torsions(self._root, self._ag)
# Get indices of the root and torsion atoms
# in a Cartesian positions array that matches the AtomGroup
self._root_XYZ_inds = [
(self._ag.indices == a.index).nonzero()[0][0] for a in self._root
]
self._torsion_XYZ_inds = [
[(self._ag.indices == a.index).nonzero()[0][0] for a in t]
for t in self._torsions
]
# The primary torsion is the first torsion on the list
# with the same central atoms
prior_atoms = [sorted([a1, a2]) for (a0, a1, a2, a3) in self._torsions]
self._primary_torsion_indices = [
prior_atoms.index(prior_atoms[n]) for n in range(len(prior_atoms))
]
self._unique_primary_torsion_indices = list(
set(self._primary_torsion_indices)
)
self._ag1 = mda.AtomGroup([ag[0] for ag in self._torsions])
self._ag2 = mda.AtomGroup([ag[1] for ag in self._torsions])
self._ag3 = mda.AtomGroup([ag[2] for ag in self._torsions])
self._ag4 = mda.AtomGroup([ag[3] for ag in self._torsions])
if filename is not None:
self.load(filename)
def _prepare(self):
self.results.bat = np.zeros(
(self.n_frames, 3 * self._ag.n_atoms), dtype=np.float64
)
def _single_frame(self):
# Calculate coordinates based on the root atoms
# The rotation axis is a normalized vector pointing from atom 0 to 1
# It is described in two degrees of freedom
# by the polar angle and azimuth
if self._root.dimensions is None:
(p0, p1, p2) = self._root.positions
else:
(p0, p1, p2) = make_whole(self._root, inplace=False)
v01 = p1 - p0
v21 = p1 - p2
# Internal coordinates
r01 = np.sqrt(np.einsum("i,i->", v01, v01))
# Distance between first two root atoms
r12 = np.sqrt(np.einsum("i,i->", v21, v21))
# Distance between second two root atoms
# Angle between root atoms
a012 = np.arccos(
max(
-1.0,
min(
1.0,
np.einsum("i,i->", v01, v21)
/ np.sqrt(
np.einsum("i,i->", v01, v01)
* np.einsum("i,i->", v21, v21)
),
),
)
)
# External coordinates
e = v01 / r01
phi = np.arctan2(e[1], e[0]) # Polar angle
theta = np.arccos(e[2]) # Azimuthal angle
# Rotation to the z axis
cp = np.cos(phi)
sp = np.sin(phi)
ct = np.cos(theta)
st = np.sin(theta)
Rz = np.array(
[[cp * ct, ct * sp, -st], [-sp, cp, 0], [cp * st, sp * st, ct]]
)
pos2 = Rz.dot(p2 - p1)
# Angle about the rotation axis
omega = np.arctan2(pos2[1], pos2[0])
root_based = np.concatenate((p0, [phi, theta, omega, r01, r12, a012]))
# Calculate internal coordinates from the torsion list
bonds = calc_bonds(
self._ag1.positions, self._ag2.positions, box=self._ag1.dimensions
)
angles = calc_angles(
self._ag1.positions,
self._ag2.positions,
self._ag3.positions,
box=self._ag1.dimensions,
)
torsions = calc_dihedrals(
self._ag1.positions,
self._ag2.positions,
self._ag3.positions,
self._ag4.positions,
box=self._ag1.dimensions,
)
# When appropriate, calculate improper torsions
shift = torsions[self._primary_torsion_indices]
shift[self._unique_primary_torsion_indices] = 0.0
torsions -= shift
# Wrap torsions to between -np.pi and np.pi
torsions = ((torsions + np.pi) % (2 * np.pi)) - np.pi
self.results.bat[self._frame_index, :] = np.concatenate(
(root_based, bonds, angles, torsions)
)
def load(self, filename, start=None, stop=None, step=None):
"""Loads the bat trajectory from a file in numpy binary format
Parameters
----------
filename : str
name of numpy binary file
start : int, optional
start frame of analysis
stop : int, optional
stop frame of analysis
step : int, optional
number of frames to skip between each analysed frame
See Also
--------
save: Saves the bat trajectory in a file in numpy binary format
"""
logger.info("Choosing frames")
self._setup_frames(self._trajectory, start, stop, step)
logger.info("Loading file")
self.results.bat = np.load(filename)
# Check array dimensions
if self.results.bat.shape != (self.n_frames, 3 * self._ag.n_atoms):
errmsg = (
"Dimensions of array in loaded file, "
f"({self.results.bat.shape[0]},"
f"{self.results.bat.shape[1]}), differ from required "
f"dimensions of ({self.n_frames, 3*self._ag.n_atoms})"
)
raise ValueError(errmsg)
# Check position of initial atom
if (self.results.bat[0, :3] != self._root[0].position).any():
raise ValueError(
"Position of initial atom in file "
+ "inconsistent with current trajectory in starting frame."
)
return self
def save(self, filename):
"""Saves the bat trajectory in a file in numpy binary format
See Also
--------
load: Loads the bat trajectory from a file in numpy binary format
"""
np.save(filename, self.results.bat)
def Cartesian(self, bat_frame):
"""Conversion of a single frame from BAT to Cartesian coordinates
One application of this function is to determine the new
Cartesian coordinates after modifying a specific torsion angle.
Parameters
----------
bat_frame : numpy.ndarray
an array with dimensions (3N,) with external then internal
degrees of freedom based on the root atoms, followed by the bond,
angle, and (proper and improper) torsion coordinates.
Returns
-------
XYZ : numpy.ndarray
an array with dimensions (N,3) with Cartesian coordinates. The first
dimension has the same ordering as the AtomGroup used to initialize
the class. The molecule will be whole opposed to wrapped around a
periodic boundary.
"""
# Split the bat vector into more convenient variables
origin = bat_frame[:3]
(phi, theta, omega) = bat_frame[3:6]
(r01, r12, a012) = bat_frame[6:9]
n_torsions = self._ag.n_atoms - 3
bonds = bat_frame[9 : n_torsions + 9]
angles = bat_frame[n_torsions + 9 : 2 * n_torsions + 9]
torsions = copy.deepcopy(bat_frame[2 * n_torsions + 9 :])
# When appropriate, convert improper to proper torsions
shift = torsions[self._primary_torsion_indices]
shift[self._unique_primary_torsion_indices] = 0.0
torsions += shift
# Wrap torsions to between -np.pi and np.pi
torsions = ((torsions + np.pi) % (2 * np.pi)) - np.pi
# Set initial root atom positions based on internal coordinates
p0 = np.array([0.0, 0.0, 0.0])
p1 = np.array([0.0, 0.0, r01])
p2 = np.array([r12 * np.sin(a012), 0.0, r01 - r12 * np.cos(a012)])
# Rotate the third atom by the appropriate value
co = np.cos(omega)
so = np.sin(omega)
# $R_Z(\omega)$
Romega = np.array([[co, -so, 0], [so, co, 0], [0, 0, 1]])
p2 = Romega.dot(p2)
# Rotate the second two atoms to point in the right direction
cp = np.cos(phi)
sp = np.sin(phi)
ct = np.cos(theta)
st = np.sin(theta)
# $R_Z(\phi) R_Y(\theta)$
Re = np.array(
[[cp * ct, -sp, cp * st], [ct * sp, cp, sp * st], [-st, 0, ct]]
)
p1 = Re.dot(p1)
p2 = Re.dot(p2)
# Translate the first three atoms by the origin
p0 += origin
p1 += origin
p2 += origin
XYZ = np.zeros((self._ag.n_atoms, 3))
XYZ[self._root_XYZ_inds[0]] = p0
XYZ[self._root_XYZ_inds[1]] = p1
XYZ[self._root_XYZ_inds[2]] = p2
# Place the remaining atoms
for (a0, a1, a2, a3), r01, angle, torsion in zip(
self._torsion_XYZ_inds, bonds, angles, torsions
):
p1 = XYZ[a1]
p3 = XYZ[a3]
p2 = XYZ[a2]
sn_ang = np.sin(angle)
cs_ang = np.cos(angle)
sn_tor = np.sin(torsion)
cs_tor = np.cos(torsion)
v21 = p1 - p2
v21 /= np.sqrt(np.einsum("i,i->", v21, v21))
v32 = p2 - p3
v32 /= np.sqrt(np.einsum("i,i->", v32, v32))
vp = np.cross(v32, v21)
cs = np.einsum("i,i->", v21, v32)
sn = max(np.sqrt(1.0 - cs * cs), 0.0000000001)
vp = vp / sn
vu = np.cross(vp, v21)
XYZ[a0] = p1 + r01 * (
vu * sn_ang * cs_tor + vp * sn_ang * sn_tor - v21 * cs_ang
)
return XYZ
@property
def atoms(self):
"""The atomgroup for which BAT are computed (read-only property)"""
return self._ag
def _get_aggregator(self):
return ResultsGroup(lookup={"bat": ResultsGroup.ndarray_vstack})
|