File: density.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (956 lines) | stat: -rw-r--r-- 37,349 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

# MDAnalysis -- density analysis
# Copyright (c) 2007-2011 Oliver Beckstein <orbeckst@gmail.com>
# (based on code from Hop --- a framework to analyze solvation dynamics from MD simulations)

r"""Generating densities from trajectories --- :mod:`MDAnalysis.analysis.density`
=============================================================================

:Author: Oliver Beckstein
:Year: 2011
:Copyright: Lesser GNU Public License v2.1+

The module provides classes and functions to generate and represent
volumetric data, in particular densities.


.. versionchanged:: 2.0.0
   Deprecated :func:`density_from_Universe`, :func:`density_from_PDB`, and
   :func:`Bfactor2RMSF` have now been removed.


Generating a density from a MD trajectory
-----------------------------------------

A common use case is to analyze the solvent density around a protein of
interest. The density is calculated with :class:`DensityAnalysis` in the
fixed coordinate system of the simulation unit cell. It is therefore necessary
to orient and fix the protein with respect to the box coordinate system. In
practice this means centering and superimposing the protein, frame by frame, on
a reference structure and translating and rotating all other components of the
simulation with the protein. In this way, the solvent will appear in the
reference frame of the protein.

An input trajectory must

1. have been centered on the protein of interest;
2. have all molecules made whole that have been broken across periodic
   boundaries [#pbc]_;
3. have the solvent molecules remapped so that they are closest to the
   solute (this is important when using triclinic unit cells such as
   a dodecahedron or a truncated octahedron) [#pbc]_.
4. have a fixed frame of reference; for instance, by superimposing a protein
   on a reference structure so that one can study the solvent density around
   it [#fit]_.

To generate the density of water molecules around a protein (assuming that the
trajectory is already appropriately treated for periodic boundary artifacts and
is suitably superimposed to provide a fixed reference frame) [#testraj]_ ::

  from MDAnalysis.analysis.density import DensityAnalysis
  u = Universe(TPR, XTC)
  ow = u.select_atoms("name OW")
  D = DensityAnalysis(ow, delta=1.0)
  D.run()
  D.results.density.convert_density('TIP4P')
  D.results.density.export("water.dx", type="double")

The positions of all water oxygens (the :class:`AtomGroup` `ow`) are
histogrammed on a grid with spacing *delta* = 1 Å. Initially the density is
measured in :math:`\text{Å}^{-3}`. With the :meth:`Density.convert_density`
method, the units of measurement are changed. In the example we are now
measuring the density relative to the literature value of the TIP4P water model
at ambient conditions (see the values in :data:`MDAnalysis.units.water` for
details). Finally, the density is written as an OpenDX_ compatible file that
can be read in VMD_, Chimera_, or PyMOL_.

The :class:`Density` object is accessible as the
:attr:`DensityAnalysis.results.density` attribute.  In particular, the data
for the density is stored as a NumPy array in :attr:`Density.grid`, which can
be processed in any manner.


Creating densities
------------------

The :class:`DensityAnalysis` class generates a :class:`Density` from an
atomgroup.

.. autoclass:: DensityAnalysis
   :members:
   :inherited-members: run

   .. automethod:: _set_user_grid


Density object
--------------

The main output of the density creation functions is a :class:`Density`
instance, which is derived from a :class:`gridData.core.Grid`. A
:class:`Density` is essentially a 3D array with origin and lengths.

.. See Also:: :mod:`gridData`


.. autoclass:: Density
   :members:
   :inherited-members:
   :show-inheritance:



.. rubric:: Footnotes

.. [#pbc] Making molecules whole can be accomplished with the
          :meth:`MDAnalysis.core.groups.AtomGroup.wrap` of
          :attr:`Universe.atoms` (use ``compound="fragments"``).  or the
          PBC-wrapping transformations in
          :mod:`MDAnalysis.transformations.wrap`.

.. [#fit] Superposition can be performed with
          :class:`MDAnalysis.analysis.align.AlignTraj` or the fitting
          transformations in :mod:`MDAnalysis.transformations.fit`.

.. [#testraj] Note that the trajectory in the example (`XTC`) is *not*
              properly made whole and fitted to a reference structure;
              these steps were omitted to clearly show the steps necessary
              for the actual density calculation.

.. Links
.. -----

.. _OpenDX: http://www.opendx.org/
.. _VMD:   http://www.ks.uiuc.edu/Research/vmd/
.. _Chimera: https://www.cgl.ucsf.edu/chimera/
.. _PyMOL: http://www.pymol.org/
.. _Gromacs: http://www.gromacs.org
.. _`gmx trjconv`: http://manual.gromacs.org/programs/gmx-trjconv.html

"""
import numpy as np
import sys
import os
import os.path
import errno
import warnings

from gridData import Grid

import MDAnalysis
from MDAnalysis.core import groups
from MDAnalysis.lib.util import (
    fixedwidth_bins,
    iterable,
    asiterable,
    deprecate,
)
from MDAnalysis.lib import NeighborSearch as NS
from MDAnalysis import NoDataError, MissingDataWarning
from .. import units
from ..lib import distances
from MDAnalysis.lib.log import ProgressBar

from .base import AnalysisBase, ResultsGroup

import logging

logger = logging.getLogger("MDAnalysis.analysis.density")


class DensityAnalysis(AnalysisBase):
    r"""Volumetric density analysis.

    The trajectory is read, frame by frame, and the atoms in `atomgroup` are
    histogrammed on a 3D grid with spacing `delta`.

    Parameters
    ----------
    atomgroup : AtomGroup or UpdatingAtomGroup
            Group of atoms (such as all the water oxygen atoms) being analyzed.
            This can be an :class:`~MDAnalysis.core.groups.UpdatingAtomGroup` for
            selections that change every time step.
    delta : float (optional)
            Bin size for the density grid in ångström (same in x,y,z).
    padding : float (optional)
            Increase histogram dimensions by padding (on top of initial box
            size) in ångström. Padding is ignored when setting a user defined
            grid.
    gridcenter : numpy ndarray, float32 (optional)
            3 element numpy array detailing the x, y and z coordinates of the
            center of a user defined grid box in ångström.
    xdim : float (optional)
            User defined x dimension box edge in ångström.
    ydim : float (optional)
            User defined y dimension box edge in ångström.
    zdim : float (optional)
            User defined z dimension box edge in ångström.

    Attributes
    ----------
    results.density : :class:`Density`
            A :class:`Density` instance containing a physical density of units
            :math:`Angstrom^{-3}`.

            After the analysis (see the :meth:`~DensityAnalysis.run` method),
            the resulting density is stored in the :attr:`results.density`
            attribute as a :class:`Density` instance. Note: this replaces the
            now deprecated :attr:`density` attribute.

    density : :class:`Density`
            Alias to the :attr:`results.density`.

            .. deprecated:: 2.0.0
               Will be removed in MDAnalysis 3.0.0. Please use
               :attr:`results.density` instead.

    Raises
    ------
    ValueError
        if AtomGroup is empty and no user defined grid is provided, or
        if the user defined grid is not or incorrectly provided
    UserWarning
        if AtomGroup is empty and a user defined grid is provided


    See Also
    --------
    pmda.density.DensityAnalysis
        A parallel version of :class:`DensityAnalysis`

    Notes
    -----
    If the `gridcenter` and `x/y/zdim` arguments are not provided,
    :class:`DensityAnalysis` will attempt to automatically generate
    a gridbox from the atoms in 'atomgroup' (See Examples).

    Normal :class:`AtomGroup` instances represent a static selection of
    atoms. If you want *dynamically changing selections* (such as "name OW and
    around 4.0 (protein and not name H*)", i.e., the water oxygen atoms that
    are within 4 Å of the protein heavy atoms) then create an
    :class:`~MDAnalysis.core.groups.UpdatingAtomGroup` (see Examples).

    :class:`DensityAnalysis` will fail when the :class:`AtomGroup` instance
    does not contain any selection of atoms, even when `updating` is set to
    ``True``. In such a situation, user defined box limits can be provided to
    generate a `Density`. Although, it remains the user's responsibility
    to ensure that the provided grid limits encompass atoms to be selected
    on all trajectory frames.

    Examples
    --------
    A common use case is to analyze the solvent density around a protein of
    interest. The density is calculated with :class:`DensityAnalysis` in the
    fixed coordinate system of the simulation unit cell. It is therefore
    necessary to orient and fix the protein with respect to the box coordinate
    system. In practice this means centering and superimposing the protein,
    frame by frame, on a reference structure and translating and rotating all
    other components of the simulation with the protein. In this way, the
    solvent will appear in the reference frame of the protein.

    An input trajectory must

    1. have been centered on the protein of interest;
    2. have all molecules made whole that have been broken across periodic
       boundaries [#pbc]_;
    3. have the solvent molecules remapped so that they are closest to the
       solute (this is important when using triclinic unit cells such as
       a dodecahedron or a truncated octahedron) [#pbc]_;
    4. have a fixed frame of reference; for instance, by superimposing a
       protein on a reference structure so that one can study the solvent
       density around it [#fit]_.

    .. rubric:: Generate the density

    To generate the density of water molecules around a protein (assuming that
    the trajectory is already appropriately treated for periodic boundary
    artifacts and is suitably superimposed to provide a fixed reference frame)
    [#testraj]_, first  create the :class:`DensityAnalysis` object by
    supplying an AtomGroup, then use  the :meth:`run` method::

        from MDAnalysis.analysis import density
        u = Universe(TPR, XTC)
        ow = u.select_atoms("name OW")
        D = density.DensityAnalysis(ow, delta=1.0)
        D.run()
        D.results.density.convert_density('TIP4P')

    The positions of all water oxygens are histogrammed on a grid with spacing
    *delta* = 1 Å and stored as a :class:`Density` object in the attribute
    :attr:`DensityAnalysis.results.density`.

    .. rubric:: Working with a density

    A :class:`Density` contains a large number of methods and attributes that
    are listed in the documentation. Here we use the
    :meth:`Density.convert_density` to convert the density from inverse cubic
    ångström to a density relative to the bulk density of TIP4P water at
    standard conditions. (MDAnalysis stores a number of literature values in
    :data:`MDAnalysis.units.water`.)

    One can directly access the density as a 3D NumPy array through
    :attr:`Density.grid`.

    By default, the :class:`Density` object returned contains a physical
    density in units of Å\ :sup:`-3`. If you are interested in recovering the
    underlying **probability density**, simply divide by the sum::

      probability_density = D.results.density.grid / D.results.density.grid.sum()

    Similarly, if you would like to recover a grid containing a **histogram of
    atom counts**, simply multiply by the volume `dV` of each bin (or voxel);
    in this case you need to ensure that the physical density is measured in
    Å\ :sup:`-3` by converting it::

      import numpy as np

      # ensure that the density is A^{-3}
      D.results.density.convert_density("A^{-3}")

      dV = np.prod(D.results.density.delta)
      atom_count_histogram = D.results.density.grid * dV


    .. rubric:: Writing the density to a file

    A density can be `exported to different formats
    <https://www.mdanalysis.org/GridDataFormats/gridData/formats.html>`_ with
    :meth:`Density.export` (thanks to the fact that :class:`Density` is a
    subclass :class:`gridData.core.Grid`, which provides the functionality).
    For example, to `write a DX file
    <https://www.mdanalysis.org/GridDataFormats/gridData/basic.html#writing-out-data>`_
    ``water.dx`` that can be read with VMD, PyMOL, or Chimera::

      D.results.density.export("water.dx", type="double")


    .. rubric:: Example: Water density in the whole simulation

    Basic use for creating a water density (just using the water oxygen
    atoms "OW")::

      D = DensityAnalysis(universe.select_atoms('name OW')).run()


    .. rubric:: Example: Water in a binding site (updating selection)

    If you are only interested in water within a certain region, e.g., within
    a vicinity around a binding site, you can use a selection that updates
    every step by using an :class:`~MDAnalysis.core.groups.UpdatingAtomGroup`::

      near_waters = universe.select_atoms('name OW and around 5 (resid 156 157 305)',
                    updating=True)
      D_site = DensityAnalysis(near_waters).run()


    .. rubric:: Example: Small region around a ligand (manual box selection)

    If you are interested in explicitly setting a grid box of a given edge size
    and origin, you can use the `gridcenter` and `xdim`/`ydim`/`zdim`
    arguments.  For example to plot the density of waters within 5 Å of a
    ligand (in this case the ligand has been assigned the residue name "LIG")
    in a cubic grid with 20 Å edges which is centered on the center of mass
    (COM) of the ligand::

      # Create a selection based on the ligand
      ligand_selection = universe.select_atoms("resname LIG")

      # Extract the COM of the ligand
      ligand_COM = ligand_selection.center_of_mass()

      # Create a density of waters on a cubic grid centered on the ligand COM
      # In this case, we update the atom selection as shown above.
      ligand_waters = universe.select_atoms('name OW and around 5 resname LIG',
                                            updating=True)
      D_water = DensityAnalysis(ligand_waters,
                                delta=1.0,
                                gridcenter=ligand_COM,
                                xdim=20, ydim=20, zdim=20)

    (It should be noted that the `padding` keyword is not used when a user
    defined grid is assigned).



    .. versionadded:: 1.0.0
    .. versionchanged:: 2.0.0
       :func:`_set_user_grid` is now a method of :class:`DensityAnalysis`.
       :class:`Density` results are now stored in a
       :class:`MDAnalysis.analysis.base.Results` instance.
    .. versionchanged:: 2.9.0
       Introduced :meth:`get_supported_backends` allowing
       for parallel execution on :mod:`multiprocessing`
       and :mod:`dask` backends.
    """

    _analysis_algorithm_is_parallelizable = True

    @classmethod
    def get_supported_backends(cls):
        return ("serial", "multiprocessing", "dask")

    def __init__(
        self,
        atomgroup,
        delta=1.0,
        metadata=None,
        padding=2.0,
        gridcenter=None,
        xdim=None,
        ydim=None,
        zdim=None,
    ):
        u = atomgroup.universe
        super(DensityAnalysis, self).__init__(u.trajectory)
        self._atomgroup = atomgroup
        self._delta = delta
        self._padding = padding
        self._gridcenter = gridcenter
        self._xdim = xdim
        self._ydim = ydim
        self._zdim = zdim

        # The grid with its dimensions has to be set up in __init__
        # so that parallel analysis works correctly: each process
        # needs to have a results._grid of the same size and the
        # same self._bins and self._arange (so this cannot happen
        # in _prepare(), which is executed in parallel on different
        # parts of the trajectory).
        coord = self._atomgroup.positions
        if self._gridcenter is not None or any(
            [self._xdim, self._ydim, self._zdim]
        ):
            # Issue 2372: padding is ignored, defaults to 2.0 therefore warn
            if self._padding > 0:
                msg = (
                    f"Box padding (currently set at {self._padding}) "
                    f"is not used in user defined grids."
                )
                warnings.warn(msg)
                logger.warning(msg)
            # Generate a copy of smin/smax from coords to later check if the
            # defined box might be too small for the selection
            try:
                smin = np.min(coord, axis=0)
                smax = np.max(coord, axis=0)
            except ValueError as err:
                msg = (
                    "No atoms in AtomGroup at input time frame. "
                    "This may be intended; please ensure that "
                    "your grid selection covers the atomic "
                    "positions you wish to capture."
                )
                warnings.warn(msg)
                logger.warning(msg)
                smin = self._gridcenter  # assigns limits to be later -
                smax = self._gridcenter  # overwritten by _set_user_grid
            # Overwrite smin/smax with user defined values
            smin, smax = self._set_user_grid(
                self._gridcenter,
                self._xdim,
                self._ydim,
                self._zdim,
                smin,
                smax,
            )
        else:
            # Make the box bigger to avoid as much as possible 'outlier'. This
            # is important if the sites are defined at a high density: in this
            # case the bulk regions don't have to be close to 1 * n0 but can
            # be less. It's much more difficult to deal with outliers.  The
            # ideal solution would use images: implement 'looking across the
            # periodic boundaries' but that gets complicated when the box
            # rotates due to RMS fitting.
            try:
                smin = np.min(coord, axis=0) - self._padding
                smax = np.max(coord, axis=0) + self._padding
            except ValueError as err:
                errmsg = (
                    "No atoms in AtomGroup at input time frame. "
                    "Grid for density could not be automatically"
                    " generated. If this is expected, a user"
                    " defined grid will need to be "
                    "provided instead."
                )
                raise ValueError(errmsg) from err
        BINS = fixedwidth_bins(self._delta, smin, smax)
        arange = np.transpose(np.vstack((BINS["min"], BINS["max"])))
        bins = BINS["Nbins"]
        # create empty grid with the right dimensions (and get the edges)
        grid, edges = np.histogramdd(
            np.zeros((1, 3)), bins=bins, range=arange, density=False
        )
        grid *= 0.0
        self.results._grid = grid
        self._edges = edges
        self._arange = arange
        self._bins = bins

    def _single_frame(self):
        h, _ = np.histogramdd(
            self._atomgroup.positions,
            bins=self._bins,
            range=self._arange,
            density=False,
        )
        self.results._grid += h

    def _conclude(self):
        # average:
        self.results._grid /= float(self.n_frames)
        density = Density(
            grid=self.results._grid,
            edges=self._edges,
            units={"length": "Angstrom"},
            parameters={"isDensity": False},
        )
        density.make_density()
        self.results.density = density

    def _get_aggregator(self):
        return ResultsGroup(lookup={"_grid": ResultsGroup.ndarray_sum})

    @property
    def density(self):
        wmsg = (
            "The `density` attribute was deprecated in MDAnalysis 2.0.0 "
            "and will be removed in MDAnalysis 3.0.0. Please use "
            "`results.density` instead"
        )
        warnings.warn(wmsg, DeprecationWarning)
        return self.results.density

    @staticmethod
    def _set_user_grid(gridcenter, xdim, ydim, zdim, smin, smax):
        """Helper function to set the grid dimensions to user defined values

        Parameters
        ----------
        gridcenter : numpy ndarray, float32
                3 element ndarray containing the x, y and z coordinates of the
                grid box center
        xdim : float
                Box edge length in the x dimension
        ydim : float
                Box edge length in the y dimension
        zdim : float
                Box edge length in the y dimension
        smin : numpy ndarray, float32
                Minimum x,y,z coordinates for the input selection
        smax : numpy ndarray, float32
                Maximum x,y,z coordinates for the input selection

        Returns
        -------
        umin : numpy ndarray, float32
                Minimum x,y,z coordinates of the user defined grid
        umax : numpy ndarray, float32
                Maximum x,y,z coordinates of the user defined grid


        .. versionchanged:: 2.0.0
           Now a staticmethod of :class:`DensityAnalysis`.
        """
        # Check user inputs
        if any(x is None for x in [gridcenter, xdim, ydim, zdim]):
            errmsg = "Gridcenter or grid dimensions are not provided"
            raise ValueError(errmsg)
        try:
            gridcenter = np.asarray(gridcenter, dtype=np.float32).reshape(
                3,
            )
        except ValueError as err:
            raise ValueError("Gridcenter must be a 3D coordinate") from err
        try:
            xyzdim = np.array([xdim, ydim, zdim], dtype=np.float32)
        except ValueError as err:
            raise ValueError("xdim, ydim, and zdim must be numbers") from err
        if any(np.isnan(gridcenter)) or any(np.isnan(xyzdim)):
            raise ValueError("Gridcenter or grid dimensions have NaN element")

        # Set min/max by shifting by half the edge length of each dimension
        umin = gridcenter - xyzdim / 2
        umax = gridcenter + xyzdim / 2

        # Here we test if coords of selection fall outside of the defined grid
        # if this happens, we warn users they may want to resize their grids
        if any(smin < umin) or any(smax > umax):
            msg = (
                "Atom selection does not fit grid --- "
                "you may want to define a larger box"
            )
            warnings.warn(msg)
            logger.warning(msg)
        return umin, umax

    # _reduce is not strictly necessary for the serial version but is necessary for
    # pmda-style parallelism (see #2542)
    # @staticmethod
    # def _reduce(res, result_single_frame):
    #     """'accumulate' action for a time series
    #
    #     If `res` is a numpy array, the `result_single_frame` is added to it
    #     element-wise. If `res` and `result_single_frame` are lists then
    #     `result_single_frame` is appended to `res`.
    #     """
    #     if isinstance(res, list) and len(res) == 0:
    #         res = result_single_frame
    #     else:
    #         res += result_single_frame
    #     return res


class Density(Grid):
    r"""Class representing a density on a regular cartesian grid.

    Parameters
    ----------
    grid : array_like
        histogram or density, typically a :class:`numpy.ndarray`
    edges : list
        list of arrays, the lower and upper bin edges along the axes
    parameters : dict
        dictionary of class parameters; saved with
        :meth:`Density.save`. The following keys are meaningful to
        the class. Meaning of the values are listed:

         *isDensity*

            - ``False``: grid is a histogram with counts [default]
            - ``True``: a density

            Applying :meth:`Density.make_density`` sets it to ``True``.
    units : dict
        A dict with the keys

        - *length*:  physical unit of grid edges (Angstrom or nm) [Angstrom]
        - *density*: unit of the density if ``isDensity=True`` or ``None``
          otherwise; the default is "Angstrom^{-3}" for densities
          (meaning :math:`\text{Å}^{-3}`).
    metadata : dict
        a user defined dictionary of arbitrary values associated with the
        density; the class does not touch :attr:`Density.metadata` but
        stores it with :meth:`Density.save`

    Attributes
    ----------
    grid : array
        counts or density
    edges : list of 1d-arrays
        The boundaries of each cell in `grid` along all axes (equivalent
        to what :func:`numpy.histogramdd` returns).
    delta : array
        Cell size in each dimension.
    origin : array
        Coordinates of the *center* of the cell at index `grid[0, 0, 0, ...,
        0]`, which is considered to be the front lower left corner.
    units : dict
        The units for lengths and density; change units with the method
        :meth:`~Density.convert_length` or :meth:`~Density.convert_density`.


    Notes
    -----
    The data (:attr:`Density.grid`) can be manipulated as a standard numpy
    array. Changes can be saved to a file using the :meth:`Density.save` method. The
    grid can be restored using the :meth:`Density.load` method or by supplying the
    filename to the constructor.

    The attribute :attr:`Density.metadata` holds a user-defined dictionary that
    can be used to annotate the data. It is also saved with :meth:`Density.save`.

    The :meth:`Density.export` method always exports a 3D object (written in
    such a way to be readable in VMD_, Chimera_, and PyMOL_), the rest should
    work for an array of any dimension. Note that PyMOL_ only understands DX
    files with the DX data type "double" in the "array" object (see `known
    issues when writing OpenDX files`_ and issue
    `MDAnalysis/GridDataFormats#35`_ for details). Using the keyword
    ``type="double"`` for the method :meth:`Density.export`, the user can
    ensure that the DX file is written in a format suitable for PyMOL_.

    If the input histogram consists of counts per cell then the
    :meth:`Density.make_density` method converts the grid to a physical density. For
    a probability density, divide it by :meth:`Density.grid.sum` or use ``density=True``
    right away in :func:`~numpy.histogramdd`.

    The user *should* set the *parameters* keyword (see docs for the
    constructor); in particular, if the data are already a density, one must
    set ``isDensity=True`` because there is no reliable way to detect if
    data represent counts or a density. As a special convenience, if data are
    read from a file and the user has not set ``isDensity`` then it is assumed
    that the data are in fact a density.

    .. _`MDAnalysis/GridDataFormats#35`:
       https://github.com/MDAnalysis/GridDataFormats/issues/35
    .. _`known issues when writing OpenDX files`:
       https://www.mdanalysis.org/GridDataFormats/gridData/formats/OpenDX.html#known-issues-for-writing-opendx-files

    See Also
    --------
    gridData.core.Grid is the base class of :class:`Density`.

    Examples
    --------
    Typical use:

    1. From a histogram (i.e. counts on a grid)::

        h,edges = numpy.histogramdd(...)
        D = Density(h, edges, parameters={'isDensity': False}, units={'length': 'A'})
        D.make_density()

    2. From a saved density file (e.g. in OpenDX format), where the lengths are
       in Angstrom and the density in 1/A**3::

         D = Density("density.dx")

    3. From a saved density file (e.g. in OpenDX format), where the lengths are
       in Angstrom and the density is measured relative to the density of water
       at ambient conditions::

         D = Density("density.dx", units={'density': 'water'})

    4. From a saved *histogram* (less common, but in order to demonstrate the
       *parameters* keyword) where the lengths are in nm::

         D = Density("counts.dx", parameters={'isDensity': False}, units={'length': 'nm'})
         D.make_density()
         D.convert_length('Angstrom^{-3}')
         D.convert_density('water')

       After the final step, ``D`` will contain a density on a grid measured in
       ångström, with the density values itself measured relative to the
       density of water.

    :class:`Density` objects can be algebraically manipulated (added,
    subtracted, multiplied, ...)  but there are *no sanity checks* in place to
    make sure that units, metadata, etc are compatible!


    .. Note::

       It is suggested to construct the Grid object from a histogram,
       to supply the appropriate length unit, and to use
       :meth:`Density.make_density` to obtain a density. This ensures
       that the length- and the density unit correspond to each other.

    """

    def __init__(self, *args, **kwargs):
        length_unit = "Angstrom"

        parameters = kwargs.pop("parameters", {})
        if (
            len(args) > 0
            and isinstance(args[0], str)
            or isinstance(kwargs.get("grid", None), str)
        ):
            # try to be smart: when reading from a file then it is likely that
            # this is a density
            parameters.setdefault("isDensity", True)
        else:
            parameters.setdefault("isDensity", False)
        units = kwargs.pop("units", {})
        units.setdefault("length", length_unit)
        if parameters["isDensity"]:
            units.setdefault("density", length_unit)
        else:
            units.setdefault("density", None)

        super(Density, self).__init__(*args, **kwargs)

        self.parameters = parameters  # isDensity: set by make_density()
        self.units = units

    def _check_set_unit(self, u):
        """Check and set units.

        First check that all units and their values in the dict `u` are valid
        and then set the object's units attribute.

        Parameters
        ----------
        u : dict
            ``{unit_type : value, ...}``

        Raises
        ------
        ValueError
            if unit types or unit values are not recognized or if required
            unit types are not in :attr:`units`
        """
        # all this unit crap should be a class...
        try:
            for unit_type, value in u.items():
                if (
                    value is None
                ):  # check here, too iffy to use dictionary[None]=None
                    self.units[unit_type] = None
                    continue
                try:
                    units.conversion_factor[unit_type][value]
                    self.units[unit_type] = value
                except KeyError:
                    errmsg = (
                        f"Unit {value} of type {unit_type} is not "
                        f"recognized."
                    )
                    raise ValueError(errmsg) from None
        except AttributeError:
            errmsg = (
                '"unit" must be a dictionary with keys "length" and "density.'
            )
            logger.fatal(errmsg)
            raise ValueError(errmsg) from None
        # need at least length and density (can be None)
        if "length" not in self.units:
            raise ValueError('"unit" must contain a unit for "length".')
        if "density" not in self.units:
            self.units["density"] = None

    def make_density(self):
        """Convert the grid (a histogram, counts in a cell) to a density (counts/volume).

        This method changes the grid irrevocably.

        For a probability density, manually divide by :meth:`grid.sum`.

        If this is already a density, then a warning is issued and nothing is
        done, so calling `make_density` multiple times does not do any harm.
        """
        # Make it a density by dividing by the volume of each grid cell
        # (from numpy.histogramdd, which is for general n-D grids)

        if self.parameters["isDensity"]:
            msg = "Running make_density() makes no sense: Grid is already a density. Nothing done."
            logger.warning(msg)
            warnings.warn(msg)
            return

        dedges = [np.diff(edge) for edge in self.edges]
        D = len(self.edges)
        for i in range(D):
            shape = np.ones(D, int)
            shape[i] = len(dedges[i])
            self.grid /= dedges[i].reshape(shape)
        self.parameters["isDensity"] = True
        # see units.densityUnit_factor for units
        self.units["density"] = self.units["length"] + "^{-3}"

    def convert_length(self, unit="Angstrom"):
        """Convert Grid object to the new `unit`.

        Parameters
        ----------
        unit : str (optional)
              unit that the grid should be converted to: one of
              "Angstrom", "nm"

        Notes
        -----
        This changes the edges but will not change the density; it is the
        user's responsibility to supply the appropriate unit if the Grid object
        is constructed from a density. It is suggested to start from a
        histogram and a length unit and use :meth:`make_density`.

        """
        if unit == self.units["length"]:
            return
        cvnfact = units.get_conversion_factor(
            "length", self.units["length"], unit
        )
        self.edges = [x * cvnfact for x in self.edges]
        self.units["length"] = unit
        self._update()  # needed to recalculate midpoints and origin

    def convert_density(self, unit="Angstrom^{-3}"):
        """Convert the density to the physical units given by `unit`.

        Parameters
        ----------
        unit : str (optional)
             The target unit that the density should be converted to.

             `unit` can be one of the following:

             =============  ===============================================================
             name           description of the unit
             =============  ===============================================================
             Angstrom^{-3}  particles/A**3
             nm^{-3}        particles/nm**3
             SPC            density of SPC water at standard conditions
             TIP3P          ... see :data:`MDAnalysis.units.water`
             TIP4P          ... see :data:`MDAnalysis.units.water`
             water          density of real water at standard conditions (0.997 g/cm**3)
             Molar          mol/l
             =============  ===============================================================

        Raises
        ------
        RuntimeError
             If the density does not have a unit associated with it to begin
             with (i.e., is not a density) then no conversion can take place.
        ValueError
             for unknown `unit`.

        Notes
        -----

        (1) This method only works if there is already a length unit associated with the
            density; otherwise raises :exc:`RuntimeError`
        (2) Conversions always go back to unity so there can be rounding
            and floating point artifacts for multiple conversions.

        """
        if not self.parameters["isDensity"]:
            errmsg = "The grid is not a density so convert_density() makes no sense."
            logger.fatal(errmsg)
            raise RuntimeError(errmsg)
        if unit == self.units["density"]:
            return
        try:
            self.grid *= units.get_conversion_factor(
                "density", self.units["density"], unit
            )
        except KeyError:
            errmsg = (
                f"The name of the unit ({unit} supplied) must be one "
                f"of:\n{units.conversion_factor['density'].keys()}"
            )
            raise ValueError(errmsg) from None
        self.units["density"] = unit

    def __repr__(self):
        if self.parameters["isDensity"]:
            grid_type = "density"
        else:
            grid_type = "histogram"
        return (
            "<Density "
            + grid_type
            + " with "
            + str(self.grid.shape)
            + " bins>"
        )