1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding: utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
r"""
Dielectric --- :mod:`MDAnalysis.analysis.dielectric`
===========================================================
:Authors: Mattia Felice Palermo, Philip Loche
:Year: 2022
:Copyright: Lesser GNU Public License v2.1+
"""
import numpy as np
from MDAnalysis.units import constants, convert
from MDAnalysis.analysis.base import AnalysisBase
from MDAnalysis.due import due, Doi
from MDAnalysis.exceptions import NoDataError
due.cite(
Doi("10.1080/00268978300102721"),
description="Dielectric analysis",
path="MDAnalysis.analysis.dielectric",
cite_module=True,
)
del Doi
class DielectricConstant(AnalysisBase):
r"""
Computes the average dipole moment
.. math::
\boldsymbol M = \sum_i q_i \boldsymbol r_i
where :math:`q_i` is the charge and :math:`\boldsymbol r_i` the position of
atom :math:`i` in the given :class:`MDAnalysis.core.groups.AtomGroup`.
Also, the static dielectric constant
.. math::
\varepsilon = 1 + \frac{\langle M^2 \rangle - \langle M \rangle^2}
{3 \varepsilon_ 0 V k_B T}
is calculated for a system in tin foil boundary conditions, which is
the usual case if electrostatics are handled with a Ewald summation
technique. See [Neumann1983]_ for details on the derivation.
.. warning::
Applying this class requires that no free charges, such as ions or
charged fragments, are present in the simulation.
Parameters
----------
atomgroup : MDAnalysis.core.groups.AtomGroup
Atomgroup on which the analysis is executed
temperature : float
Temperature (Kelvin) at which the system has been simulated
make_whole : bool
Make molecules whole; If the input already contains whole molecules
this can be disabled to gain speedup
verbose : bool
Show detailed progress of the calculation
Attributes
----------
results.M : numpy.ndarray
Directional dependant dipole moment
:math:`\langle \boldsymbol M \rangle` in :math:`eÅ`.
results.M2 : numpy.ndarray
Directional dependant squared dipole moment
:math:`\langle \boldsymbol M^2 \rangle` in :math:`(eÅ)^2`
results.fluct : float
Directional dependant dipole moment fluctuation
:math:`\langle \boldsymbol M^2 \rangle - \langle \boldsymbol M \rangle^2`
in :math:`(eÅ)^2`
results.eps : numpy.ndarray
Directional dependant static dielectric constant
results.eps_mean : float
Static dielectric constant
Example
-------
Create a :class:`DielectricConstant` instance by supplying an
:class:`~MDAnalysis.core.groups.AtomGroup`,
then use the :meth:`run` method::
import MDAnalysis as mda
from MDAnalysis.analysis.dielectric import DielectricConstant
from MDAnalysisTests.datafiles import PSF_TRICLINIC, DCD_TRICLINIC
# Load a pure water system
universe = mda.Universe(PSF_TRICLINIC, DCD_TRICLINIC)
diel = DielectricConstant(universe.atoms)
diel.run()
print(diel.results)
The static dielectric constant of the provided atomgroup is saved
within the :class:`~MDAnalysis.analysis.base.Results` attribute.
.. versionadded:: 2.1.0
"""
def __init__(self, atomgroup, temperature=300, make_whole=True, **kwargs):
super(DielectricConstant, self).__init__(
atomgroup.universe.trajectory, **kwargs
)
self.atomgroup = atomgroup
self.temperature = temperature
self.make_whole = make_whole
def _prepare(self):
if not hasattr(self.atomgroup, "charges"):
raise NoDataError("No charges defined given atomgroup.")
if not np.allclose(
self.atomgroup.total_charge(compound="fragments"), 0.0, atol=1e-5
):
raise NotImplementedError(
"Analysis for non-neutral systems or"
" systems with free charges are not"
" available."
)
self.volume = 0
self.results.M = np.zeros(3)
self.results.M2 = np.zeros(3)
self.results.fluct = np.zeros(3)
self.results.eps = np.zeros(3)
self.results.eps_mean = 0
def _single_frame(self):
if self.make_whole:
self.atomgroup.unwrap()
self.volume += self.atomgroup.universe.trajectory.ts.volume
M = np.dot(self.atomgroup.charges, self.atomgroup.positions)
self.results.M += M
self.results.M2 += M * M
def _conclude(self):
self.results.M /= self.n_frames
self.results.M2 /= self.n_frames
self.volume /= self.n_frames
self.results.fluct = self.results.M2 - self.results.M * self.results.M
self.results.eps = self.results.fluct / (
convert(constants["Boltzmann_constant"], "kJ/mol", "eV")
* self.temperature
* self.volume
* constants["electric_constant"]
)
self.results.eps_mean = self.results.eps.mean()
self.results.eps += 1
self.results.eps_mean += 1
|