1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import numbers
from multiprocessing.sharedctypes import SynchronizedArray
from multiprocessing import Process, Manager
from joblib import cpu_count
import numpy as np
import sys
import MDAnalysis as mda
from ...coordinates.memory import MemoryReader
class TriangularMatrix(object):
"""Triangular matrix class. This class is designed to provide a
memory-efficient representation of a triangular matrix that still behaves
as a square symmetric one. The class wraps a numpy.array object,
in which data are memorized in row-major order. It also has few additional
facilities to conveniently load/write a matrix from/to file. It can be
accessed using the [] and () operators, similarly to a normal numpy array.
"""
def __init__(self, size, metadata=None, loadfile=None):
"""Class constructor.
Parameters
----------
size : int / array_like
Size of the matrix (number of rows or columns). If an
array is provided instead, the size of the triangular matrix
will be calculated and the array copied as the matrix
elements. Otherwise, the matrix is just initialized to zero.
metadata : dict or None
Metadata dictionary. Used to generate the metadata attribute.
loadfile : str or None
Load the matrix from this file. All the attributes and data will
be determined by the matrix file itself (i.e. metadata will be
ignored); size has to be provided though.
"""
if isinstance(metadata, dict):
self.metadata = np.array(metadata.items(), dtype=object)
else:
self.metadata = metadata
self.size = size
if loadfile:
self.loadz(loadfile)
elif isinstance(size, numbers.Integral):
self.size = size
self._elements = np.zeros((size + 1) * size // 2, dtype=np.float64)
elif isinstance(size, SynchronizedArray):
self._elements = np.array(size.get_obj(), dtype=np.float64)
self.size = int((np.sqrt(1 + 8 * len(size)) - 1) / 2)
elif isinstance(size, np.ndarray):
self._elements = size
self.size = int((np.sqrt(1 + 8 * len(size)) - 1) / 2)
else:
raise TypeError
def __getitem__(self, args):
x, y = args
if x < y:
x, y = y, x
return self._elements[x * (x + 1) // 2 + y]
def __setitem__(self, args, val):
x, y = args
if x < y:
x, y = y, x
self._elements[x * (x + 1) // 2 + y] = val
def as_array(self):
"""Return standard numpy array equivalent"""
# pylint: disable=unsubscriptable-object
a = np.zeros((self.size, self.size))
a[np.tril_indices(self.size)] = self._elements
a[np.triu_indices(self.size)] = a.T[np.triu_indices(self.size)]
return a
def savez(self, fname):
"""Save matrix in the npz compressed numpy format. Save metadata and
data as well.
Parameters
----------
fname : str
Name of the file to be saved.
"""
np.savez(fname, elements=self._elements, metadata=self.metadata)
def loadz(self, fname):
"""Load matrix from the npz compressed numpy format.
Parameters
----------
fname : str
Name of the file to be loaded.
"""
loaded = np.load(fname, allow_pickle=True)
if loaded["metadata"].shape != ():
if loaded["metadata"]["number of frames"] != self.size:
raise TypeError
self.metadata = loaded["metadata"]
else:
if self.size * (self.size - 1) / 2 + self.size != len(
loaded["elements"]
):
raise TypeError
self._elements = loaded["elements"]
def __add__(self, scalar):
"""Add scalar to matrix elements.
Parameters
----------
scalar : float
Scalar to be added.
"""
newMatrix = self.__class__(self.size)
newMatrix._elements = self._elements + scalar
return newMatrix
def __iadd__(self, scalar):
"""Add scalar to matrix elements.
Parameters
----------
scalar : float
Scalar to be added.
"""
self._elements += scalar
return self
def __mul__(self, scalar):
"""Multiply with scalar.
Parameters
----------
scalar : float
Scalar to multiply with.
"""
newMatrix = self.__class__(self.size)
newMatrix._elements = self._elements * scalar
return newMatrix
def __imul__(self, scalar):
"""Multiply with scalar.
Parameters
----------
scalar : float
Scalar to multiply with.
"""
self._elements *= scalar
return self
__rmul__ = __mul__
def __str__(self):
return str(self.as_array())
class ParallelCalculation(object):
r"""
Generic parallel calculation class. Can use arbitrary functions,
arguments to functions and kwargs to functions.
Attributes
----------
n_jobs : int
Number of cores to be used for parallel calculation. If -1 use all
available cores.
function : callable object
Function to be run in parallel.
args : list of tuples
Each tuple contains the arguments that will be passed to
function(). This means that a call to function() is performed for
each tuple. function is called as function(\*args, \*\*kwargs). Runs
are distributed on the requested numbers of cores.
kwargs : list of dicts
Each tuple contains the named arguments that will be passed to
function, similarly as described for the args attribute.
nruns : int
Number of runs to be performed. Must be equal to len(args) and
len(kwargs).
"""
def __init__(self, n_jobs, function, args=None, kwargs=None):
"""
Parameters
----------
n_jobs : int
Number of cores to be used for parallel calculation. If -1 use all
available cores.
function : object that supports __call__, as functions
function to be run in parallel.
args : list of tuples
Arguments for function; see the ParallelCalculation class
description.
kwargs : list of dicts or None
kwargs for function; see the ParallelCalculation
class description.
"""
# args[i] should be a list of args, one for each run
self.n_jobs = n_jobs
if self.n_jobs == -1:
self.n_jobs = cpu_count()
self.functions = function
if not hasattr(self.functions, "__iter__"):
self.functions = [self.functions] * len(args)
if len(self.functions) != len(args):
self.functions = self.functions[:] * (
len(args) // len(self.functions)
)
# Arguments should be present
if args is None:
args = []
self.args = args
# If kwargs are not present, use empty dicts
if kwargs:
self.kwargs = kwargs
else:
self.kwargs = [{} for i in self.args]
self.nruns = len(args)
def worker(self, q, results):
"""
Generic worker. Will run function with the prescribed args and kwargs.
Parameters
----------
q : multiprocessing.Manager.Queue object
work queue, from which the worker fetches arguments and
messages
results : multiprocessing.Manager.Queue object
results queue, where results are put after each calculation is
finished
"""
while True:
i = q.get()
if i == "STOP":
return
results.put(
(i, self.functions[i](*self.args[i], **self.kwargs[i]))
)
def run(self):
r"""
Run parallel calculation.
Returns
-------
results : tuple of ordered tuples (int, object)
int is the number of the calculation corresponding to a
certain argument in the args list, and object is the result of
corresponding calculation. For instance, in (3, output), output
is the return of function(\*args[3], \*\*kwargs[3]).
"""
results_list = []
if self.n_jobs == 1:
for i in range(self.nruns):
results_list.append(
(i, self.functions[i](*self.args[i], **self.kwargs[i]))
)
else:
manager = Manager()
q = manager.Queue()
results = manager.Queue()
workers = [
Process(target=self.worker, args=(q, results))
for i in range(self.n_jobs)
]
for i in range(self.nruns):
q.put(i)
for w in workers:
q.put("STOP")
for w in workers:
w.start()
for w in workers:
w.join()
results.put("STOP")
for i in iter(results.get, "STOP"):
results_list.append(i)
return tuple(sorted(results_list, key=lambda x: x[0]))
def trm_indices(a, b):
"""
Generate (i,j) indeces of a triangular matrix, between elements a and b.
The matrix size is automatically determined from the number of elements.
For instance: trm_indices((0,0),(2,1)) yields (0,0) (1,0) (1,1) (2,0)
(2,1).
Parameters
----------
a : (int i, int j) tuple
starting matrix element.
b : (int i, int j) tuple
final matrix element.
"""
i, j = a
while i < b[0]:
if i == j:
yield (i, j)
j = 0
i += 1
else:
yield (i, j)
j += 1
while j <= b[1]:
yield (i, j)
j += 1
def trm_indices_nodiag(n):
"""generate (i,j) indeces of a triangular matrix of n rows (or columns),
without diagonal (e.g. no elements (0,0),(1,1),...,(n,n))
Parameters
----------
n : int
Matrix size
"""
for i in range(1, n):
for j in range(i):
yield (i, j)
def trm_indices_diag(n):
"""generate (i,j) indeces of a triangular matrix of n rows (or columns),
with diagonal
Parameters
----------
n : int
Matrix size
"""
for i in range(0, n):
for j in range(i + 1):
yield (i, j)
def merge_universes(universes):
"""
Merge list of universes into one
Parameters
----------
universes : list of Universe objects
Returns
----------
Universe object
"""
for universe in universes:
universe.transfer_to_memory()
return mda.Universe(
universes[0].filename,
np.concatenate(
tuple([e.trajectory.timeseries(order="fac") for e in universes]),
axis=0,
),
format=MemoryReader,
)
|