File: gnm.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (487 lines) | stat: -rw-r--r-- 15,865 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

# Analyse a trajectory using elastic network models, following the approach of Hall et al (JACS 2007)
# Ben Hall (benjamin.a.hall@ucl.ac.uk) is to blame
# Copyright 2011; Consider under GPL v2 or later
r"""
Elastic network analysis of MD trajectories --- :mod:`MDAnalysis.analysis.gnm`
==============================================================================

:Author: Benjamin Hall <benjamin.a.hall@ucl.ac.uk>
:Year: 2011
:Copyright: Lesser GNU Public License v2.1 or later


Analyse a trajectory using elastic network models, following the approach of
:footcite:p:`Hall2007`.

An example is provided in the MDAnalysis Cookbook_, listed as GNMExample_.

.. _GNMExample: https://github.com/MDAnalysis/MDAnalysisCookbook/blob/master/examples/GNMExample.py
.. _Cookbook: https://github.com/MDAnalysis/MDAnalysisCookbook

The basic approach is to pass a trajectory to :class:`GNMAnalysis` and then run
the analysis:

.. code-block:: python

    u = MDAnalysis.Universe(PSF, DCD)
    C = MDAnalysis.analysis.gnm.GNMAnalysis(u, ReportVector="output.txt")

    C.run()
    output = zip(*C.results)

    with open("eigenvalues.dat", "w") as outputfile:
        for item in output[1]:
            outputfile.write(item + "\n")


The results are found in :attr:`GNMAnalysis.results`, which can be
used for further processing (see :footcite:p:`Hall2007`).

.. rubric:: References

.. footbibliography::


Analysis tasks
--------------

.. autoclass:: GNMAnalysis
   :members:
.. autoclass:: closeContactGNMAnalysis
   :members:

Utility functions
-----------------

The following functions are used internally and are typically not
directly needed to perform the analysis.

.. autofunction:: generate_grid
.. autofunction:: order_list

.. versionchanged:: 0.16.0
   removed unused function :func:`backup_file`

"""
import itertools
import logging
import warnings

import numpy as np

from .base import AnalysisBase, ResultsGroup


from MDAnalysis.analysis.base import Results

logger = logging.getLogger("MDAnalysis.analysis.GNM")


def _dsq(a, b):
    diff = a - b
    return np.dot(diff, diff)


def generate_grid(positions, cutoff):
    """Simple grid search.

    An alternative to searching the entire list of each atom; divide the
    structure into `cutoff` sized boxes This way, for each particle you only need
    to search the neighbouring boxes to find the particles within the `cutoff`.

    Observed a 6x speed up for a smallish protein with ~300 residues; this
    should get better with bigger systems.

    Parameters
    ----------
    positions : array
        coordinates of the atoms
    cutoff : float
        find particles with distance less than `cutoff` from each other; the
        grid will consist of boxes with sides of at least length `cutoff`

    """
    positions = np.asarray(positions)

    x, y, z = positions.T
    high_x = x.max()
    high_y = y.max()
    high_z = z.max()
    low_x = x.min()
    low_y = y.min()
    low_z = z.min()
    # Ok now generate a list with 3 dimensions representing boxes in x, y and z
    grid = [
        [
            [[] for i in range(int((high_z - low_z) / cutoff) + 1)]
            for j in range(int((high_y - low_y) / cutoff) + 1)
        ]
        for k in range(int((high_x - low_x) / cutoff) + 1)
    ]
    for i, pos in enumerate(positions):
        x_pos = int((pos[0] - low_x) / cutoff)
        y_pos = int((pos[1] - low_y) / cutoff)
        z_pos = int((pos[2] - low_z) / cutoff)
        grid[x_pos][y_pos][z_pos].append(i)
    return grid


def neighbour_generator(positions, cutoff):
    """
    return atom pairs that are in neighboring regions of space from a verlet-grid

    Parameters
    ----------
    positions : ndarray
        atom positions
    cutoff : float
        size of grid box

    Yields
    ------
    i_atom, j_atom
        indices of close atom pairs
    """
    grid = generate_grid(positions, cutoff)
    n_x = len(grid)
    n_y = len(grid[0])
    n_z = len(grid[0][0])
    for cell_x, cell_y, cell_z in itertools.product(
        range(n_x), range(n_y), range(n_z)
    ):
        atoms = grid[cell_x][cell_y][cell_z]
        # collect all atoms in own cell and neighboring cell
        all_atoms = []
        nei_cells = (-1, 0, 1)
        for x, y, z in itertools.product(nei_cells, nei_cells, nei_cells):
            gx = cell_x + x
            gy = cell_y + y
            gz = cell_z + z
            if 0 <= gx < n_x and 0 <= gy < n_y and 0 <= gz < n_z:
                all_atoms += grid[gx][gy][gz]
        # return all possible atom pairs in current cell
        for i_atom in atoms:
            for j_atom in all_atoms:
                yield i_atom, j_atom


def order_list(w):
    """Returns a dictionary showing the order of eigenvalues (which are reported scrambled normally)"""
    ordered = list(w)
    unordered = list(w)
    ordered.sort()
    list_map = {}
    for i in range(len(w)):
        list_map[i] = unordered.index(ordered[i])
    return list_map


class GNMAnalysis(AnalysisBase):
    """Basic tool for GNM analysis.

    Each frame is treated as a novel structure and the GNM
    calculated.  By default, this stores the dominant eigenvector
    and its associated eigenvalue; either can be used to monitor
    conformational change in a simulation.

    Parameters
    ----------
    universe : Universe
          Analyze the full trajectory in the universe.
    select : str (optional)
          MDAnalysis selection string
    cutoff : float (optional)
          Consider selected atoms within the cutoff as neighbors for the
          Gaussian network model.
    ReportVector : str (optional)
          filename to write eigenvectors to, by default no output is written
    Bonus_groups : tuple
          This is a tuple of selection strings that identify additional groups
          (such as ligands). The center of mass of each group will be added as
          a single point in the ENM (it is a popular way of treating small
          ligands such as drugs). You need to ensure that none of the atoms in
          `Bonus_groups` is contained in `selection` as this could lead to
          double counting. No checks are applied.

    Attributes
    ----------
    results.times : numpy.ndarray
            simulation times used in analysis
    results.eigenvalues : numpy.ndarray
            calculated eigenvalues
    results.eigenvectors : numpy.ndarray
            calculated eigenvectors

    See Also
    --------
    :class:`closeContactGNMAnalysis`


    .. versionchanged:: 0.16.0
       Made :meth:`generate_output` a private method :meth:`_generate_output`.

    .. versionchanged:: 1.0.0
       Changed `selection` keyword to `select`

    .. versionchanged:: 2.0.0
       Use :class:`~MDAnalysis.analysis.AnalysisBase` as parent class and
       store results as attributes ``times``, ``eigenvalues`` and
       ``eigenvectors`` of the ``results`` attribute.

    .. versionchanged:: 2.8.0
       Enabled **parallel execution** with the ``multiprocessing`` and ``dask``
       backends; use the new method :meth:`get_supported_backends` to see all
       supported backends.
    """

    _analysis_algorithm_is_parallelizable = True

    @classmethod
    def get_supported_backends(cls):
        return ("serial", "multiprocessing", "dask")

    def __init__(
        self,
        universe,
        select="protein and name CA",
        cutoff=7.0,
        ReportVector=None,
        Bonus_groups=None,
    ):
        super(GNMAnalysis, self).__init__(universe.trajectory)
        self.u = universe
        self.select = select
        self.cutoff = cutoff
        self.results = Results()
        self.results.eigenvalues = []
        self.results.eigenvectors = []
        self._timesteps = None  # time for each frame
        self.ReportVector = ReportVector
        self.Bonus_groups = (
            [self.u.select_atoms(item) for item in Bonus_groups]
            if Bonus_groups
            else []
        )
        self.ca = self.u.select_atoms(self.select)

    def _generate_output(
        self, w, v, outputobject, ReportVector=None, counter=0
    ):
        """Appends time, eigenvalues and eigenvectors to results.

        This generates the output by adding eigenvalue and
        eigenvector data to an appendable object and optionally
        printing some of the results to file. This is the function
        to replace if you want to generate a more complex set of
        outputs
        """
        list_map = order_list(w)
        if ReportVector:
            with open(ReportVector, "a") as oup:
                for item in enumerate(v[list_map[1]]):
                    print(
                        "",
                        counter,
                        item[0] + 1,
                        w[list_map[1]],
                        item[1],
                        file=oup,
                    )

        outputobject.eigenvalues.append(w[list_map[1]])
        outputobject.eigenvectors.append(v[list_map[1]])

    def generate_kirchoff(self):
        """Generate the Kirchhoff matrix of contacts.

        This generates the neighbour matrix by generating a grid of
        near-neighbours and then calculating which are are within
        the cutoff.

        Returns
        -------
        array
                the resulting Kirchhoff matrix
        """
        positions = self.ca.positions

        # add the com from each bonus group to the ca_positions list
        for item in self.Bonus_groups:
            # bonus = self.u.select_atoms(item)
            positions = np.vstack((positions, item.center_of_mass()))

        natoms = len(positions)
        matrix = np.zeros((natoms, natoms), np.float64)

        cutoffsq = self.cutoff**2

        for i_atom, j_atom in neighbour_generator(positions, self.cutoff):
            if (
                j_atom > i_atom
                and _dsq(positions[i_atom], positions[j_atom]) < cutoffsq
            ):
                matrix[i_atom][j_atom] = -1.0
                matrix[j_atom][i_atom] = -1.0
                matrix[i_atom][i_atom] = matrix[i_atom][i_atom] + 1
                matrix[j_atom][j_atom] = matrix[j_atom][j_atom] + 1

        return matrix

    def _single_frame(self):
        matrix = self.generate_kirchoff()
        try:
            _, w, v = np.linalg.svd(matrix)
        except np.linalg.LinAlgError:
            msg = f"SVD with cutoff {self.cutoff} failed to converge. "
            msg += f"Skip frame at {self._ts.time}."
            warnings.warn(msg)
            logger.warning(msg)
            return
        # Save the results somewhere useful in some useful format. Usefully.
        self._generate_output(
            w,
            v,
            self.results,
            ReportVector=self.ReportVector,
            counter=self._ts.frame,
        )

    def _conclude(self):
        self.results.times = self.times
        self.results.eigenvalues = np.asarray(self.results.eigenvalues)
        self.results.eigenvectors = np.asarray(self.results.eigenvectors)

    def _get_aggregator(self):
        return ResultsGroup(
            lookup={
                "eigenvectors": ResultsGroup.ndarray_hstack,
                "eigenvalues": ResultsGroup.ndarray_hstack,
                "times": ResultsGroup.ndarray_hstack,
            }
        )


class closeContactGNMAnalysis(GNMAnalysis):
    r"""GNMAnalysis only using close contacts.

    This is a version of the GNM where the Kirchoff matrix is
    constructed from the close contacts between individual atoms
    in different residues.

    Parameters
    ----------
    universe : Universe
          Analyze the full trajectory in the universe.
    select : str (optional)
          MDAnalysis selection string
    cutoff : float (optional)
          Consider selected atoms within the cutoff as neighbors for the
          Gaussian network model.
    ReportVector : str (optional)
          filename to write eigenvectors to, by default no output is written
    weights : {"size", None} (optional)
          If set to "size" (the default) then weight the contact by
          :math:`1/\sqrt{N_i N_j}` where :math:`N_i` and :math:`N_j` are the
          number of atoms in the residues :math:`i` and :math:`j` that contain
          the atoms that form a contact.

    Attributes
    ----------
    results.times : numpy.ndarray
            simulation times used in analysis
    results.eigenvalues : numpy.ndarray
            calculated eigenvalues
    results.eigenvectors : numpy.ndarray
            calculated eigenvectors

    Notes
    -----
    The `MassWeight` option has now been removed.

    See Also
    --------
    :class:`GNMAnalysis`


    .. versionchanged:: 0.16.0
       Made :meth:`generate_output` a private method :meth:`_generate_output`.

    .. deprecated:: 0.16.0
       Instead of ``MassWeight=True`` use ``weights="size"``.

    .. versionchanged:: 1.0.0
       MassWeight option (see above deprecation entry).
       Changed `selection` keyword to `select`

    .. versionchanged:: 2.0.0
       Use :class:`~MDAnalysis.analysis.AnalysisBase` as parent class and
       store results as attributes ``times``, ``eigenvalues`` and
       ``eigenvectors`` of the `results` attribute.
    """

    def __init__(
        self,
        universe,
        select="protein",
        cutoff=4.5,
        ReportVector=None,
        weights="size",
    ):
        super(closeContactGNMAnalysis, self).__init__(
            universe, select, cutoff, ReportVector
        )
        self.weights = weights

    def generate_kirchoff(self):
        nresidues = self.ca.n_residues
        positions = self.ca.positions
        residue_index_map = self.ca.resindices.copy()
        matrix = np.zeros((nresidues, nresidues), dtype=np.float64)
        cutoffsq = self.cutoff**2

        # cache sqrt of residue sizes (slow) so that sr[i]*sr[j] == sqrt(r[i]*r[j])
        inv_sqrt_res_sizes = np.ones(len(self.ca.residues))
        if self.weights == "size":
            inv_sqrt_res_sizes = 1 / np.sqrt(
                [r.atoms.n_atoms for r in self.ca.residues]
            )

        for i_atom, j_atom in neighbour_generator(positions, self.cutoff):
            if (
                j_atom > i_atom
                and _dsq(positions[i_atom], positions[j_atom]) < cutoffsq
            ):
                iresidue = residue_index_map[i_atom]
                jresidue = residue_index_map[j_atom]
                contact = (
                    inv_sqrt_res_sizes[iresidue] * inv_sqrt_res_sizes[jresidue]
                )
                matrix[iresidue][jresidue] -= contact
                matrix[jresidue][iresidue] -= contact
                matrix[iresidue][iresidue] += contact
                matrix[jresidue][jresidue] += contact

        return matrix