1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
Linear Density --- :mod:`MDAnalysis.analysis.lineardensity`
===========================================================
A tool to compute mass and charge density profiles along the three
cartesian axes [xyz] of the simulation cell. Works only for orthorombic,
fixed volume cells (thus for simulations in canonical NVT ensemble).
"""
import os.path as path
import numpy as np
import warnings
from MDAnalysis.analysis.base import AnalysisBase, Results
from MDAnalysis.units import constants
from MDAnalysis.lib.util import deprecate
from MDAnalysis.analysis.results import ResultsGroup
# TODO: Remove in version 3.0.0
class Results(Results):
"""From version 3.0.0 onwards, some entries in Results will be renamed. See
the docstring for LinearDensity for details. The Results class is defined
here to implement deprecation warnings for the user."""
_deprecation_dict = {
"pos": "mass_density",
"pos_std": "mass_density_stddev",
"char": "charge_density",
"char_std": "charge_density_stddev",
}
def _deprecation_warning(self, key):
warnings.warn(
f"`{key}` is deprecated and will be removed in version 3.0.0. "
f"Please use `{self._deprecation_dict[key]}` instead.",
DeprecationWarning,
)
def __getitem__(self, key):
if key in self._deprecation_dict.keys():
self._deprecation_warning(key)
return super(Results, self).__getitem__(
self._deprecation_dict[key]
)
return super(Results, self).__getitem__(key)
def __getattr__(self, attr):
if attr in self._deprecation_dict.keys():
self._deprecation_warning(attr)
attr = self._deprecation_dict[attr]
return super(Results, self).__getattr__(attr)
class LinearDensity(AnalysisBase):
r"""Linear density profile
Parameters
----------
select : AtomGroup
any atomgroup
grouping : str {'atoms', 'residues', 'segments', 'fragments'}
Density profiles will be computed either on the atom positions (in
the case of 'atoms') or on the center of mass of the specified
grouping unit ('residues', 'segments', or 'fragments').
binsize : float
Bin width in Angstrom used to build linear density
histograms. Defines the resolution of the resulting density
profile (smaller --> higher resolution)
verbose : bool, optional
Show detailed progress of the calculation if set to ``True``
Attributes
----------
results.x.dim : int
index of the [xyz] axes
results.x.mass_density : numpy.ndarray
mass density in :math:`g \cdot cm^{-3}` in [xyz] direction
results.x.mass_density_stddev : numpy.ndarray
standard deviation of the mass density in [xyz] direction
results.x.charge_density : numpy.ndarray
charge density in :math:`\mathrm{e} \cdot mol \cdot cm^{-3}` in
[xyz] direction
results.x.charge_density_stddev : numpy.ndarray
standard deviation of the charge density in [xyz] direction
results.x.pos: numpy.ndarray
Alias to the :attr:`results.x.mass_density` attribute.
.. deprecated:: 2.2.0
Will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.x.mass_density` instead.
results.x.pos_std: numpy.ndarray
Alias to the :attr:`results.x.mass_density_stddev` attribute.
.. deprecated:: 2.2.0
Will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.x.mass_density_stddev` instead.
results.x.char: numpy.ndarray
Alias to the :attr:`results.x.charge_density` attribute.
.. deprecated:: 2.2.0
Will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.x.charge_density` instead.
results.x.char_std: numpy.ndarray
Alias to the :attr:`results.x.charge_density_stddev` attribute.
.. deprecated:: 2.2.0
Will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.x.charge_density_stddev` instead.
results.x.slice_volume : float
volume of bin in [xyz] direction
results.x.hist_bin_edges : numpy.ndarray
edges of histogram bins for mass/charge densities, useful for, e.g.,
plotting of histogram data.
Note: These density units are likely to be changed in the future.
Example
-------
First create a :class:`LinearDensity` object by supplying a selection,
then use the :meth:`run` method. Finally access the results
stored in results, i.e. the mass density in the x direction.
.. code-block:: python
ldens = LinearDensity(selection)
ldens.run()
print(ldens.results.x.mass_density)
Alternatively, other types of grouping can be selected using the
``grouping`` keyword. For example to calculate the density based on
a grouping of the :class:`~MDAnalysis.core.groups.ResidueGroup`
of the input :class:`~MDAnalysis.core.groups.AtomGroup`.
.. code-block:: python
ldens = LinearDensity(selection, grouping='residues', binsize=1.0)
ldens.run()
.. versionadded:: 0.14.0
.. versionchanged:: 1.0.0
Support for the ``start``, ``stop``, and ``step`` keywords has been
removed. These should instead be passed to :meth:`LinearDensity.run`.
The ``save()`` method was also removed, you can use ``np.savetxt()`` or
``np.save()`` on the :attr:`LinearDensity.results` dictionary contents
instead.
.. versionchanged:: 1.0.0
Changed `selection` keyword to `select`
.. versionchanged:: 2.0.0
Results are now instances of
:class:`~MDAnalysis.core.analysis.Results` allowing access
via key and attribute.
.. versionchanged:: 2.2.0
* Fixed a bug that caused LinearDensity to fail if grouping="residues"
or grouping="segments" were set.
* Residues, segments, and fragments will be analysed based on their
centre of mass, not centre of geometry as previously stated.
* LinearDensity now works with updating atom groups.
* Added new result container :attr:`results.x.hist_bin_edges`.
It contains the bin edges of the histrogram bins for calculated
densities and can be used for easier plotting of histogram data.
.. versionchanged:: 2.10.0
* Introduced :meth:`get_supported_backends` allowing for parallel execution
on :mod:`multiprocessing` and :mod:`dask` backends.
* Removed undocumented and unused attribute :attr:`totalmass`.
.. deprecated:: 2.2.0
The `results` dictionary has been changed and the attributes
:attr:`results.x.pos`, :attr:`results.x.pos_std`, :attr:`results.x.char`
and :attr:`results.x.char_std` are now deprecated. They will be removed
in 3.0.0. Please use :attr:`results.x.mass_density`,
:attr:`results.x.mass_density_stddev`, :attr:`results.x.charge_density`,
and :attr:`results.x.charge_density_stddev` instead.
"""
_analysis_algorithm_is_parallelizable = True
@classmethod
def get_supported_backends(cls):
return (
"serial",
"multiprocessing",
"dask",
)
def __init__(self, select, grouping="atoms", binsize=0.25, **kwargs):
super(LinearDensity, self).__init__(
select.universe.trajectory, **kwargs
)
# allows use of run(parallel=True)
self._ags = [select]
self._universe = select.universe
self.binsize = binsize
# group of atoms on which to compute the COM (same as used in
# AtomGroup.wrap())
self.grouping = grouping
# Initiate result instances
self.results["x"] = Results(dim=0)
self.results["y"] = Results(dim=1)
self.results["z"] = Results(dim=2)
# Box sides
self.dimensions = self._universe.dimensions[:3]
self.volume = np.prod(self.dimensions)
# number of bins
bins = (self.dimensions // self.binsize).astype(int)
# Here we choose a number of bins of the largest cell side so that
# x, y and z values can use the same "coord" column in the output file
self.nbins = bins.max()
slices_vol = self.volume / bins
self.keys = [
"mass_density",
"mass_density_stddev",
"charge_density",
"charge_density_stddev",
]
# Initialize results array with zeros
for dim in self.results:
idx = self.results[dim]["dim"]
self.results[dim]["slice_volume"] = slices_vol[idx]
for key in self.keys:
self.results[dim][key] = np.zeros(self.nbins)
# Get masses and charges for the selection (e.g. UpdatingAtomGroup)
if self.grouping == "atoms":
self.masses = self._ags[0].masses
self.charges = self._ags[0].charges
elif self.grouping in ["residues", "segments", "fragments"]:
self.masses = self._ags[0].total_mass(compound=self.grouping)
self.charges = self._ags[0].total_charge(compound=self.grouping)
else:
raise AttributeError(
f"{self.grouping} is not a valid value for grouping."
)
@staticmethod
def _custom_aggregator(results):
# NB: the *stddev values here are not the standard deviation,
# but the variance. The stddev is calculated in _conclude()
mass_density = np.sum(
[entry["mass_density"] for entry in results], axis=0
)
mass_density_stddev = np.sum(
[entry["mass_density_stddev"] for entry in results], axis=0
)
charge_density = np.sum(
[entry["charge_density"] for entry in results], axis=0
)
charge_density_stddev = np.sum(
[entry["charge_density_stddev"] for entry in results], axis=0
)
return Results(
dim=results[0]["dim"],
slice_volume=results[0]["slice_volume"],
hist_bin_edges=results[0]["hist_bin_edges"],
mass_density=mass_density,
mass_density_stddev=mass_density_stddev,
charge_density=charge_density,
charge_density_stddev=charge_density_stddev,
)
def _get_aggregator(self):
return ResultsGroup(
lookup={
"x": self._custom_aggregator,
"y": self._custom_aggregator,
"z": self._custom_aggregator,
}
)
def _single_frame(self):
if self.grouping == "atoms":
self.masses = self._ags[0].masses
self.charges = self._ags[0].charges
elif self.grouping in ["residues", "segments", "fragments"]:
self.masses = self._ags[0].total_mass(compound=self.grouping)
self.charges = self._ags[0].total_charge(compound=self.grouping)
else:
raise AttributeError(
f"{self.grouping} is not a valid value for grouping."
)
self.group = getattr(self._ags[0], self.grouping)
self._ags[0].wrap(compound=self.grouping)
# Find position of atom/group of atoms
if self.grouping == "atoms":
positions = self._ags[0].positions # faster for atoms
else:
# Centre of mass for residues, segments, fragments
positions = self._ags[0].center_of_mass(compound=self.grouping)
for dim in ["x", "y", "z"]:
idx = self.results[dim]["dim"]
key = "mass_density"
key_std = "mass_density_stddev"
# histogram for positions weighted on masses
hist, _ = np.histogram(
positions[:, idx],
weights=self.masses,
bins=self.nbins,
range=(0.0, max(self.dimensions)),
)
self.results[dim][key] += hist
self.results[dim][key_std] += np.square(hist)
key = "charge_density"
key_std = "charge_density_stddev"
# histogram for positions weighted on charges
hist, bin_edges = np.histogram(
positions[:, idx],
weights=self.charges,
bins=self.nbins,
range=(0.0, max(self.dimensions)),
)
self.results[dim][key] += hist
self.results[dim][key_std] += np.square(hist)
self.results[dim]["hist_bin_edges"] = bin_edges
def _conclude(self):
avogadro = constants["N_Avogadro"] # unit: mol^{-1}
volume_conversion = 1e-24 # unit: A^3/cm^3
# divide result values by avodagro and convert from A3 to cm3
k = avogadro * volume_conversion
# Average results over the number of configurations
for dim in ["x", "y", "z"]:
for key in [
"mass_density",
"mass_density_stddev",
"charge_density",
"charge_density_stddev",
]:
self.results[dim][key] /= self.n_frames
# Compute standard deviation for the error
# For certain tests in testsuite, floating point imprecision
# can lead to negative radicands of tiny magnitude (yielding nan).
# radicand_mass and radicand_charge are therefore calculated first
# and negative values set to 0 before the square root
# is calculated.
radicand_mass = self.results[dim][
"mass_density_stddev"
] - np.square(self.results[dim]["mass_density"])
radicand_mass[radicand_mass < 0] = 0
self.results[dim]["mass_density_stddev"] = np.sqrt(radicand_mass)
radicand_charge = self.results[dim][
"charge_density_stddev"
] - np.square(self.results[dim]["charge_density"])
radicand_charge[radicand_charge < 0] = 0
self.results[dim]["charge_density_stddev"] = np.sqrt(
radicand_charge
)
for dim in ["x", "y", "z"]:
# norming factor, units of mol^-1 cm^3
norm = k * self.results[dim]["slice_volume"]
for key in self.keys:
self.results[dim][key] /= norm
# TODO: Remove in 3.0.0
@deprecate(
release="2.2.0",
remove="3.0.0",
message="It will be replaced by a :meth:`_reduce` "
"method in the future",
)
def _add_other_results(self, other):
"""For parallel analysis"""
for dim in ["x", "y", "z"]:
for key in self.keys:
self.results[dim][key] += other.results[dim][key]
|