File: polymer.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (410 lines) | stat: -rw-r--r-- 12,808 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

"""
Polymer analysis --- :mod:`MDAnalysis.analysis.polymer`
=======================================================


:Author: Richard J. Gowers
:Year: 2015, 2018
:Copyright: Lesser GNU Public License v2.1+

This module contains various commonly used tools in analysing polymers.
"""
import numpy as np
import scipy.optimize
import warnings
import logging

from .. import NoDataError
from ..core.groups import requires, AtomGroup
from ..lib.distances import calc_bonds
from .base import AnalysisBase, ResultsGroup

logger = logging.getLogger(__name__)


@requires("bonds")
def sort_backbone(backbone):
    """Rearrange a linear AtomGroup into backbone order

    Requires that the backbone has bond information,
    and that only backbone atoms are provided (ie no side
    chains or hydrogens).

    Parameters
    ----------
    backbone : AtomGroup
      the backbone atoms, not necessarily in order

    Returns
    -------
    sorted_backbone : AtomGroup
      backbone in order, so `sorted_backbone[i]` is bonded to
      `sorted_backbone[i - 1]` and `sorted_backbone[i + 1]`


    .. versionadded:: 0.20.0
    """
    degrees = [len(atom.bonded_atoms & backbone) for atom in backbone]
    deg1_atoms = [atom for atom, d in zip(backbone, degrees) if d == 1]
    wrong_atoms = [
        atom for atom, d in zip(backbone, degrees) if d not in (1, 2)
    ]

    if len(wrong_atoms) > 0:
        raise ValueError(
            "Backbone contains atoms with connectivity degree not equal to 1 or 2. "
            "This suggests branches or isolated atoms. Problematic atoms: {}."
            "".format(", ".join(str(a) for a in wrong_atoms))
        )

    if len(deg1_atoms) != 2:
        raise ValueError(
            "Backbone connectivity invalid: "
            "expected exactly 2 atoms with connectivity degree 1 (caps). "
            "Cyclical structures are not supported. "
            "Atoms with connectivity degree 1 found: {}."
            "".format(", ".join(str(a) for a in deg1_atoms))
        )

    # arbitrarily choose one of the capping atoms to be the startpoint
    sorted_backbone = AtomGroup([deg1_atoms[0]])

    for _ in range(len(backbone) - 1):
        # current end of the chain
        end_atom = sorted_backbone[-1]

        # look at all bonded atoms which are also part of the backbone
        # and subtract any that have already been added
        next_atom = (end_atom.bonded_atoms & backbone) - sorted_backbone

        # append this to the sorted backbone
        sorted_backbone += next_atom

    return sorted_backbone


class PersistenceLength(AnalysisBase):
    r"""Calculate the persistence length for polymer chains

    The persistence length is the length at which two points on the polymer
    chain become decorrelated.  This is determined by first measuring the
    autocorrelation (:math:`C(n)`) of two bond vectors
    (:math:`\mathbf{a}_i, \mathbf{a}_{i + n}`) separated by :math:`n` bonds

    .. math::

       C(n) = \langle \cos\theta_{i, i+n} \rangle =
               \langle \mathbf{a_i} \cdot \mathbf{a_{i+n}} \rangle

    where :math:`a_i` and :math:`a_{i+n}` are unit vectors
    along the bonds.

    An exponential decay is then fitted to this, which yields the
    persistence length

    .. math::

       C(n) \approx \exp\left( - \frac{n \bar{l_B}}{l_P} \right)

    where :math:`\bar{l_B}` is the average bond length, and :math:`l_P` is
    the persistence length which is fitted

    Parameters
    ----------
    atomgroups : iterable
       List of AtomGroups. Each should represent a single
       polymer chain, ordered in the correct order.
    verbose : bool, optional
       Show detailed progress of the calculation if set to ``True``.

    Attributes
    ----------
    results.bond_autocorrelation : numpy.ndarray
       the measured bond autocorrelation
    results.lb : float
       the average bond length

       .. versionadded:: 2.0.0

    lb : float

       Alias to the :attr:`results.lb`.

       .. deprecated:: 2.0.0
            Will be removed in MDAnalysis 3.0.0. Please use
            :attr:`results.lb` instead.

    results.x : numpy.ndarray
        length of the decorrelation predicted by *lp*

        .. versionadded:: 2.0.0

    results.lp : float
       calculated persistence length

       .. versionadded:: 2.0.0

    lp : float

       Alias to the :attr:`results.lp`.

       .. deprecated:: 2.0.0
            Will be removed in MDAnalysis 3.0.0. Please use
            :attr:`results.lp` instead.

    results.fit : numpy.ndarray
       the modelled backbone decorrelation predicted by *lp*

       .. versionadded:: 2.0.0

    fit : float

       Alias to the :attr:`results.fit`.

       .. deprecated:: 2.0.0
            Will be removed in MDAnalysis 3.0.0. Please use
            :attr:`results.fit` instead.

    See Also
    --------
    :func:`sort_backbone`
       for producing the sorted AtomGroup required for input.

    Example
    -------
    .. code-block:: python

        from MDAnalysis.tests.datafiles import TRZ_psf, TRZ
        import MDAnalysis as mda
        from MDAnalysis.analysis import polymer
        u = mda.Universe(TRZ_psf, TRZ)

        # this system is a pure polymer melt of polyamide,
        # so we can select the chains by using the .fragments attribute
        chains = u.atoms.fragments

        # select only the backbone atoms for each chain
        backbones = [chain.select_atoms('not name O* H*') for chain in chains]

        # sort the chains, removing any non-backbone atoms
        sorted_backbones = [polymer.sort_backbone(bb) for bb in backbones]
        persistence_length = polymer.PersistenceLength(sorted_backbones)

        # Run the analysis, this will average over all polymer chains
        # and all timesteps in trajectory
        persistence_length = persistence_length.run()
        print(f'The persistence length is: {persistence_length.results.lp}')

        # always check the visualisation of this:
        persistence_length.plot()


    .. versionadded:: 0.13.0
    .. versionchanged:: 0.20.0
       The run method now automatically performs the exponential fit
    .. versionchanged:: 1.0.0
       Deprecated :meth:`PersistenceLength.perform_fit` has now been removed.
    .. versionchanged:: 2.0.0
       Former ``results`` are now stored as ``results.bond_autocorrelation``.
       :attr:`lb`, :attr:`lp`, :attr:`fit` are now stored in a
       :class:`MDAnalysis.analysis.base.Results` instance.
    .. versionchanged:: 2.10.0
       introduced :meth:`get_supported_backends` allowing for parallel
       execution on ``multiprocessing`` and ``dask`` backends.
    """

    _analysis_algorithm_is_parallelizable = True

    @classmethod
    def get_supported_backends(cls):
        return ("serial", "multiprocessing", "dask")

    def __init__(self, atomgroups, **kwargs):
        super(PersistenceLength, self).__init__(
            atomgroups[0].universe.trajectory, **kwargs
        )
        self._atomgroups = atomgroups

        # Check that all chains are the same length
        lens = [len(ag) for ag in atomgroups]
        chainlength = len(atomgroups[0])
        if not all(l == chainlength for l in lens):
            raise ValueError("Not all AtomGroups were the same size")
        self.chainlength = chainlength

    def _prepare(self):
        self.results.raw_bond_autocorr = np.zeros(
            self.chainlength - 1, dtype=np.float32
        )

    def _single_frame(self):
        # could optimise this by writing a "self dot array"
        # we're only using the upper triangle of np.inner
        # function would accept a bunch of coordinates and spit out the
        # decorrel for that

        for chain in self._atomgroups:
            # Vector from each atom to next
            vecs = chain.positions[1:] - chain.positions[:-1]
            # Normalized to unit vectors
            vecs /= np.sqrt((vecs * vecs).sum(axis=1))[:, None]

            inner_pr = np.inner(vecs, vecs)
            for i in range(self.chainlength - 1):
                self.results.raw_bond_autocorr[
                    : (self.chainlength - 1) - i
                ] += inner_pr[i, i:]

    def _get_aggregator(self):
        return ResultsGroup(
            lookup={
                "raw_bond_autocorr": ResultsGroup.ndarray_sum,
            }
        )

    @property
    def lb(self):
        wmsg = (
            "The `lb` attribute was deprecated in "
            "MDAnalysis 2.0.0 and will be removed in MDAnalysis 3.0.0. "
            "Please use `results.variance` instead."
        )
        warnings.warn(wmsg, DeprecationWarning)
        return self.results.lb

    @property
    def lp(self):
        wmsg = (
            "The `lp` attribute was deprecated in "
            "MDAnalysis 2.0.0 and will be removed in MDAnalysis 3.0.0. "
            "Please use `results.variance` instead."
        )
        warnings.warn(wmsg, DeprecationWarning)
        return self.results.lp

    @property
    def fit(self):
        wmsg = (
            "The `fit` attribute was deprecated in "
            "MDAnalysis 2.0.0 and will be removed in MDAnalysis 3.0.0. "
            "Please use `results.variance` instead."
        )
        warnings.warn(wmsg, DeprecationWarning)
        return self.results.fit

    def _conclude(self):
        norm = np.linspace(self.chainlength - 1, 1, self.chainlength - 1)
        norm *= len(self._atomgroups) * self._trajectory.n_frames
        self.results.bond_autocorrelation = (
            self.results.raw_bond_autocorr / norm
        )
        self._calc_bond_length()
        self._perform_fit()

    def _calc_bond_length(self):
        """calculate average bond length"""
        bs = []
        for ag in self._atomgroups:
            pos = ag.positions
            b = calc_bonds(pos[:-1], pos[1:]).mean()
            bs.append(b)
        self.results.lb = np.mean(bs)

    def _perform_fit(self):
        """Fit the results to an exponential decay"""
        try:
            self.results.bond_autocorrelation
        except AttributeError:
            raise NoDataError("Use the run method first") from None
        self.results.x = self.results.lb * np.arange(
            len(self.results.bond_autocorrelation)
        )

        self.results.lp = fit_exponential_decay(
            self.results.x, self.results.bond_autocorrelation
        )

        self.results.fit = np.exp(-self.results.x / self.results.lp)

    def plot(self, ax=None):
        """Visualize the results and fit

        Parameters
        ----------
        ax : matplotlib.Axes, optional
          if provided, the graph is plotted on this axis

        Returns
        -------
        ax : the axis that the graph was plotted on
        """
        import matplotlib.pyplot as plt

        if ax is None:
            _, ax = plt.subplots()
        ax.plot(
            self.results.x,
            self.results.bond_autocorrelation,
            "ro",
            label="Result",
        )
        ax.plot(self.results.x, self.results.fit, label="Fit")
        ax.set_xlabel(r"x")
        ax.set_ylabel(r"$C(x)$")
        ax.set_xlim(0.0, 40 * self.results.lb)

        ax.legend(loc="best")

        return ax


def fit_exponential_decay(x, y):
    r"""Fit a function to an exponential decay

    .. math::  y = \exp\left(- \frac{x}{a}\right)

    Parameters
    ----------
    x, y : array_like
      The two arrays of data

    Returns
    -------
    a : float
      The coefficient *a* for this decay

    Notes
    -----
    This function assumes that data starts at 1.0 and decays to 0.0

    """

    def expfunc(x, a):
        return np.exp(-x / a)

    a = scipy.optimize.curve_fit(expfunc, x, y)[0][0]

    return a