1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
"""Analysis results and their aggregation --- :mod:`MDAnalysis.analysis.results`
================================================================================
Module introduces two classes, :class:`Results` and :class:`ResultsGroup`,
used for storing and aggregating data in
:meth:`MDAnalysis.analysis.base.AnalysisBase.run()`, respectively.
Classes
-------
The :class:`Results` class is an extension of a built-in dictionary
type, that holds all assigned attributes in :attr:`self.data` and
allows for access either via dict-like syntax, or via class-like syntax:
.. code-block:: python
from MDAnalysis.analysis.results import Results
r = Results()
r.array = [1, 2, 3, 4]
assert r['array'] == r.array == [1, 2, 3, 4]
The :class:`ResultsGroup` can merge multiple :class:`Results` objects.
It is mainly used by :class:`MDAnalysis.analysis.base.AnalysisBase` class,
that uses :meth:`ResultsGroup.merge()` method to aggregate results from
multiple workers, initialized during a parallel run:
.. code-block:: python
from MDAnalysis.analysis.results import Results, ResultsGroup
import numpy as np
r1, r2 = Results(), Results()
r1.masses = [1, 2, 3, 4, 5]
r2.masses = [0, 0, 0, 0]
r1.vectors = np.arange(10).reshape(5, 2)
r2.vectors = np.arange(8).reshape(4, 2)
group = ResultsGroup(
lookup = {
'masses': ResultsGroup.flatten_sequence,
'vectors': ResultsGroup.ndarray_vstack
}
)
r = group.merge([r1, r2])
assert r.masses == list((*r1.masses, *r2.masses))
assert (r.vectors == np.vstack([r1.vectors, r2.vectors])).all()
"""
from collections import UserDict
import numpy as np
from typing import Callable, Sequence
class Results(UserDict):
r"""Container object for storing results.
:class:`Results` are dictionaries that provide two ways by which values
can be accessed: by dictionary key ``results["value_key"]`` or by object
attribute, ``results.value_key``. :class:`Results` stores all results
obtained from an analysis after calling :meth:`~AnalysisBase.run()`.
The implementation is similar to the :class:`sklearn.utils.Bunch`
class in `scikit-learn`_.
.. _`scikit-learn`: https://scikit-learn.org/
.. _`sklearn.utils.Bunch`: https://scikit-learn.org/stable/modules/generated/sklearn.utils.Bunch.html
Raises
------
AttributeError
If an assigned attribute has the same name as a default attribute.
ValueError
If a key is not of type ``str`` and therefore is not able to be
accessed by attribute.
Examples
--------
>>> from MDAnalysis.analysis.base import Results
>>> results = Results(a=1, b=2)
>>> results['b']
2
>>> results.b
2
>>> results.a = 3
>>> results['a']
3
>>> results.c = [1, 2, 3, 4]
>>> results['c']
[1, 2, 3, 4]
.. versionadded:: 2.0.0
.. versionchanged:: 2.8.0
Moved :class:`Results` to :mod:`MDAnalysis.analysis.results`
"""
def _validate_key(self, key):
if key in dir(self):
raise AttributeError(
f"'{key}' is a protected dictionary attribute"
)
elif isinstance(key, str) and not key.isidentifier():
raise ValueError(f"'{key}' is not a valid attribute")
def __init__(self, *args, **kwargs):
kwargs = dict(*args, **kwargs)
if "data" in kwargs.keys():
raise AttributeError(f"'data' is a protected dictionary attribute")
self.__dict__["data"] = {}
self.update(kwargs)
def __setitem__(self, key, item):
self._validate_key(key)
super().__setitem__(key, item)
def __setattr__(self, attr, val):
if attr == "data":
super().__setattr__(attr, val)
else:
self.__setitem__(attr, val)
def __getattr__(self, attr):
try:
return self[attr]
except KeyError as err:
raise AttributeError(
f"'Results' object has no attribute '{attr}'"
) from err
def __delattr__(self, attr):
try:
del self[attr]
except KeyError as err:
raise AttributeError(
f"'Results' object has no attribute '{attr}'"
) from err
def __getstate__(self):
return self.data
def __setstate__(self, state):
self.data = state
class ResultsGroup:
"""
Management and aggregation of results stored in :class:`Results` instances.
A :class:`ResultsGroup` is an optional description for :class:`Result` "dictionaries"
that are used in analysis classes based on :class:`AnalysisBase`. For each *key* in a
:class:`Result` it describes how multiple pieces of the data held under the key are
to be aggregated. This approach is necessary when parts of a trajectory are analyzed
independently (e.g., in parallel) and then need to me merged (with :meth:`merge`) to
obtain a complete data set.
Parameters
----------
lookup : dict[str, Callable], optional
aggregation functions lookup dict, by default None
Examples
--------
.. code-block:: python
from MDAnalysis.analysis.results import ResultsGroup, Results
group = ResultsGroup(lookup={'mass': ResultsGroup.float_mean})
obj1 = Results(mass=1)
obj2 = Results(mass=3)
assert {'mass': 2.0} == group.merge([obj1, obj2])
.. code-block:: python
# you can also set `None` for those attributes that you want to skip
lookup = {'mass': ResultsGroup.float_mean, 'trajectory': None}
group = ResultsGroup(lookup)
objects = [Results(mass=1, skip=None), Results(mass=3, skip=object)]
assert group.merge(objects, require_all_aggregators=False) == {'mass': 2.0}
.. versionadded:: 2.8.0
"""
def __init__(self, lookup: dict[str, Callable] = None):
self._lookup = lookup
def merge(
self, objects: Sequence[Results], require_all_aggregators: bool = True
) -> Results:
"""Merge multiple Results into a single Results instance.
Merge multiple :class:`Results` instances into a single one, using the
`lookup` dictionary to determine the appropriate aggregator functions for
each named results attribute. If the resulting object only contains a single
element, it just returns it without using any aggregators.
Parameters
----------
objects : Sequence[Results]
Multiple :class:`Results` instances with the same data attributes.
require_all_aggregators : bool, optional
if True, raise an exception when no aggregation function for a
particular argument is found. Allows to skip aggregation for the
parameters that aren't needed in the final object --
see :class:`ResultsGroup`.
Returns
-------
Results
merged :class:`Results`
Raises
------
ValueError
if no aggregation function for a key is found and ``require_all_aggregators=True``
"""
if len(objects) == 1:
merged_results = objects[0]
return merged_results
merged_results = Results()
for key in objects[0].keys():
agg_function = self._lookup.get(key, None)
if agg_function is not None:
results_of_t = [obj[key] for obj in objects]
merged_results[key] = agg_function(results_of_t)
elif require_all_aggregators:
raise ValueError(f"No aggregation function for {key=}")
return merged_results
@staticmethod
def flatten_sequence(arrs: list[list]):
"""Flatten a list of lists into a list
Parameters
----------
arrs : list[list]
list of lists
Returns
-------
list
flattened list
"""
return [item for sublist in arrs for item in sublist]
@staticmethod
def ndarray_sum(arrs: list[np.ndarray]):
"""sums an ndarray along ``axis=0``
Parameters
----------
arrs : list[np.ndarray]
list of input arrays. Must have the same shape.
Returns
-------
np.ndarray
sum of input arrays
"""
return np.array(arrs).sum(axis=0)
@staticmethod
def ndarray_mean(arrs: list[np.ndarray]):
"""calculates mean of input ndarrays along ``axis=0``
Parameters
----------
arrs : list[np.ndarray]
list of input arrays. Must have the same shape.
Returns
-------
np.ndarray
mean of input arrays
"""
return np.array(arrs).mean(axis=0)
@staticmethod
def float_mean(floats: list[float]):
"""calculates mean of input float values
Parameters
----------
floats : list[float]
list of float values
Returns
-------
float
mean value
"""
return np.array(floats).mean()
@staticmethod
def ndarray_hstack(arrs: list[np.ndarray]):
"""Performs horizontal stack of input arrays
Parameters
----------
arrs : list[np.ndarray]
input numpy arrays
Returns
-------
np.ndarray
result of stacking
"""
return np.hstack(arrs)
@staticmethod
def ndarray_vstack(arrs: list[np.ndarray]):
"""Performs vertical stack of input arrays
Parameters
----------
arrs : list[np.ndarray]
input numpy arrays
Returns
-------
np.ndarray
result of stacking
"""
return np.vstack(arrs)
|