File: OpenMM.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (215 lines) | stat: -rw-r--r-- 7,486 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

"""OpenMM structure I/O --- :mod:`MDAnalysis.converters.OpenMM`
================================================================


Read coordinates data from a
`OpenMM <http://docs.openmm.org/latest/api-python/generated/openmm.app.simulation.Simulation.html#openmm.app.simulation.Simulation>`_
:class:`openmm.app.simulation.Simulation` with :class:`OpenMMReader`
into a MDAnalysis Universe.

Also converts other objects within the
`OpenMM Application Layer <http://docs.openmm.org/latest/api-python/app.html>`_:

- `openmm.app.pdbfile.PDBFile <http://docs.openmm.org/latest/api-python/generated/openmm.app.pdbfile.PDBFile.html#openmm.app.pdbfile.PDBFile>`_
- `openmm.app.modeller.Modeller <http://docs.openmm.org/latest/api-python/generated/openmm.app.modeller.Modeller.html#openmm.app.modeller.Modeller>`_
- `openmm.app.pdbxfile.PDBxFile <http://docs.openmm.org/latest/api-python/generated/openmm.app.pdbxfile.PDBxFile.html#openmm.app.pdbxfile.PDBxFile>`_

Example
-------
OpenMM can read various file formats into OpenMM objects.
MDAnalysis can then convert some of these OpenMM objects into MDAnalysis Universe objects.

    >>> import openmm.app as app
    >>> import MDAnalysis as mda
    >>> from MDAnalysis.tests.datafiles import PDBX
    >>> pdbxfile = app.PDBxFile(PDBX)
    >>> mda.Universe(pdbxfile)
    <Universe with 60 atoms>



Classes
-------

.. autoclass:: OpenMMSimulationReader
   :members:

.. autoclass:: OpenMMAppReader
   :members:


"""


import numpy as np

from ..coordinates import base


class OpenMMSimulationReader(base.SingleFrameReaderBase):
    """Reader for OpenMM Simulation objects


    .. versionadded:: 2.0.0
    """

    format = "OPENMMSIMULATION"
    units = {
        "time": "ps",
        "length": "nm",
        "velocity": "nm/ps",
        "force": "kJ/(mol*nm)",
        "energy": "kJ/mol",
    }

    @staticmethod
    def _format_hint(thing):
        """Can this reader read *thing*?"""
        try:
            from openmm.app import Simulation
        except ImportError:
            try:  # pragma: no cover
                from simtk.openmm.app import Simulation
            except ImportError:
                return False
        else:
            return isinstance(thing, Simulation)

    def _read_first_frame(self):
        self.n_atoms = self.filename.topology.getNumAtoms()

        self.ts = self._mda_timestep_from_omm_context()

        if self.convert_units:
            self.convert_pos_from_native(self.ts._pos)
            self.ts.triclinic_dimensions = self.convert_pos_from_native(
                self.ts.triclinic_dimensions, inplace=False
            )
            self.ts.dimensions[3:] = _sanitize_box_angles(
                self.ts.dimensions[3:]
            )
            self.convert_velocities_from_native(self.ts._velocities)
            self.convert_forces_from_native(self.ts._forces)
            self.convert_time_from_native(self.ts.dt)

    def _mda_timestep_from_omm_context(self):
        """Construct Timestep object from OpenMM context"""
        try:
            import openmm.unit as u
        except ImportError:  # pragma: no cover
            import simtk.unit as u

        state = self.filename.context.getState(
            -1, getVelocities=True, getForces=True, getEnergy=True
        )

        n_atoms = self.filename.context.getSystem().getNumParticles()

        ts = self._Timestep(n_atoms, **self._ts_kwargs)
        ts.frame = 0
        ts.data["time"] = state.getTime()._value
        ts.data["potential_energy"] = (
            state.getPotentialEnergy().in_units_of(u.kilojoule / u.mole)._value
        )
        ts.data["kinetic_energy"] = (
            state.getKineticEnergy().in_units_of(u.kilojoule / u.mole)._value
        )
        ts.triclinic_dimensions = state.getPeriodicBoxVectors(
            asNumpy=True
        )._value
        ts.dimensions[3:] = _sanitize_box_angles(ts.dimensions[3:])
        ts.positions = state.getPositions(asNumpy=True)._value
        ts.velocities = state.getVelocities(asNumpy=True)._value
        ts.forces = state.getForces(asNumpy=True)._value

        return ts


class OpenMMAppReader(base.SingleFrameReaderBase):
    """Reader for OpenMM Application layer objects

    See also `the object definition in the OpenMM Application layer <http://docs.openmm.org/latest/api-python/generated/openmm.app.simulation.Simulation.html#openmm.app.simulation.Simulation>`_

    .. versionadded:: 2.0.0
    """

    format = "OPENMMAPP"
    units = {"time": "ps", "length": "nm"}

    @staticmethod
    def _format_hint(thing):
        """Can this reader read *thing*?"""
        try:
            from openmm import app
        except ImportError:
            try:  # pragma: no cover
                from simtk.openmm import app
            except ImportError:
                return False
        else:
            return isinstance(thing, (app.PDBFile, app.Modeller, app.PDBxFile))

    def _read_first_frame(self):
        self.n_atoms = self.filename.topology.getNumAtoms()

        self.ts = self._mda_timestep_from_omm_app()

        if self.convert_units:
            self.convert_pos_from_native(self.ts._pos)
            if self.ts.dimensions is not None:
                self.ts.triclinic_dimensions = self.convert_pos_from_native(
                    self.ts.triclinic_dimensions, inplace=False
                )
                self.ts.dimensions[3:] = _sanitize_box_angles(
                    self.ts.dimensions[3:]
                )

    def _mda_timestep_from_omm_app(self):
        """Construct Timestep object from OpenMM Application object"""

        omm_object = self.filename
        n_atoms = omm_object.topology.getNumAtoms()

        ts = self._Timestep(n_atoms, **self._ts_kwargs)
        ts.frame = 0
        if omm_object.topology.getPeriodicBoxVectors() is not None:
            ts.triclinic_dimensions = np.array(
                omm_object.topology.getPeriodicBoxVectors()._value
            )
            ts.dimensions[3:] = _sanitize_box_angles(ts.dimensions[3:])
        ts.positions = np.array(omm_object.getPositions()._value)

        return ts


def _sanitize_box_angles(angles):
    """Ensure box angles correspond to first quadrant

    See `discussion on unitcell angles <https://github.com/MDAnalysis/mdanalysis/pull/2917/files#r620558575>`_
    """
    inverted = 180 - angles

    return np.min(np.array([angles, inverted]), axis=0)