1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
ParmEd topology parser --- :mod:`MDAnalysis.converters.ParmEdParser`
====================================================================
Converts a `ParmEd <https://parmed.github.io/ParmEd/html>`_
:class:`parmed.structure.Structure` into a :class:`MDAnalysis.core.Topology`.
Example
-------
If you want to use an MDAnalysis-written ParmEd structure for simulation
in ParmEd, you need to first read your files with ParmEd to include the
necessary topology parameters. ::
>>> import parmed as pmd
>>> import MDAnalysis as mda
>>> from MDAnalysis.tests.datafiles import PRM7_ala2, RST7_ala2
>>> prm = pmd.load_file(PRM7_ala2, RST7_ala2)
>>> prm
<AmberParm 3026 atoms; 1003 residues; 3025 bonds; PBC (orthogonal); parametrized>
We can then convert this to an MDAnalysis structure, select only the
protein atoms, and then convert it back to ParmEd. ::
>>> u = mda.Universe(prm)
>>> u
<Universe with 3026 atoms>
>>> prot = u.select_atoms('protein')
>>> prm_prot = prot.convert_to('PARMED')
>>> prm_prot
<Structure 23 atoms; 2 residues; 22 bonds; PBC (orthogonal); parametrized>
From here you can create an OpenMM simulation system and minimize the
energy. ::
>>> import openmm as mm
>>> import openmm.app as app
>>> from parmed import unit as u
>>> system = prm_prot.createSystem(nonbondedMethod=app.NoCutoff,
... constraints=app.HBonds,
... implicitSolvent=app.GBn2)
>>> integrator = mm.LangevinIntegrator(
... 300*u.kelvin, # Temperature of heat bath
... 1.0/u.picoseconds, # Friction coefficient
... 2.0*u.femtoseconds, # Time step
... )
>>> sim = app.Simulation(prm_prot.topology, system, integrator)
>>> sim.context.setPositions(prm_prot.positions)
>>> sim.minimizeEnergy(maxIterations=500)
Now you can continue on and run a simulation, if you wish.
Classes
-------
.. autoclass:: ParmEdParser
:members:
:inherited-members:
.. versionchanged:: 2.0.0
The ParmEdParser class was moved from :mod:`~MDAnalysis.topology` to
:mod:`~MDAnalysis.converters`
"""
import logging
import numpy as np
from ..topology.base import TopologyReaderBase, change_squash
from ..guesser.tables import Z2SYMB
from ..core.topologyattrs import (
Atomids,
Atomnames,
AltLocs,
ChainIDs,
Atomtypes,
Occupancies,
Tempfactors,
Elements,
Masses,
Charges,
Resids,
Resnums,
Resnames,
Segids,
GBScreens,
SolventRadii,
NonbondedIndices,
RMins,
Epsilons,
RMin14s,
Epsilon14s,
Bonds,
UreyBradleys,
Angles,
Dihedrals,
Impropers,
CMaps,
)
from ..core.topology import Topology
logger = logging.getLogger("MDAnalysis.converters.ParmEdParser")
def squash_identical(values):
if len(values) == 1:
return values[0]
else:
return tuple(values)
class ParmEdParser(TopologyReaderBase):
"""
For ParmEd structures
"""
format = "PARMED"
@staticmethod
def _format_hint(thing):
"""Can this Parser read object *thing*?
.. versionadded:: 1.0.0
"""
try:
import parmed as pmd
except ImportError: # if no parmed, probably not parmed
return False
else:
return isinstance(thing, pmd.Structure)
def parse(self, **kwargs):
"""Parse PARMED into Topology
Returns
-------
MDAnalysis *Topology* object
.. versionchanged:: 2.0.0
Elements are no longer guessed, if the elements present in the
parmed object are not recoginsed (usually given an atomic mass of 0)
then they will be assigned an empty string.
"""
structure = self.filename
#### === ATOMS === ####
names = []
masses = []
charges = []
types = []
atomic_numbers = []
serials = []
resnames = []
resids = []
chainids = []
segids = []
altLocs = []
bfactors = []
occupancies = []
screens = []
solvent_radii = []
nonbonded_indices = []
rmins = []
epsilons = []
rmin14s = []
epsilon14s = []
for atom in structure.atoms:
names.append(atom.name)
masses.append(atom.mass)
charges.append(atom.charge)
types.append(atom.type)
atomic_numbers.append(atom.atomic_number)
serials.append(atom.number)
resnames.append(atom.residue.name)
resids.append(atom.residue.number)
chainids.append(atom.residue.chain)
segids.append(atom.residue.segid)
altLocs.append(atom.altloc)
bfactors.append(atom.bfactor)
occupancies.append(atom.occupancy)
screens.append(atom.screen)
solvent_radii.append(atom.solvent_radius)
nonbonded_indices.append(atom.nb_idx)
rmins.append(atom.rmin)
epsilons.append(atom.epsilon)
rmin14s.append(atom.rmin_14)
epsilon14s.append(atom.epsilon_14)
attrs = []
n_atoms = len(names)
elements = []
for z, name in zip(atomic_numbers, names):
try:
elements.append(Z2SYMB[z])
except KeyError:
elements.append("")
# Make Atom TopologyAttrs
for vals, Attr, dtype in (
(names, Atomnames, object),
(masses, Masses, np.float32),
(charges, Charges, np.float32),
(types, Atomtypes, object),
(elements, Elements, object),
(serials, Atomids, np.int32),
(chainids, ChainIDs, object),
(altLocs, AltLocs, object),
(bfactors, Tempfactors, np.float32),
(occupancies, Occupancies, np.float32),
(screens, GBScreens, np.float32),
(solvent_radii, SolventRadii, np.float32),
(nonbonded_indices, NonbondedIndices, np.int32),
(rmins, RMins, np.float32),
(epsilons, Epsilons, np.float32),
(rmin14s, RMin14s, np.float32),
(epsilon14s, Epsilon14s, np.float32),
):
attrs.append(Attr(np.array(vals, dtype=dtype)))
resids = np.array(resids, dtype=np.int32)
resnames = np.array(resnames, dtype=object)
chainids = np.array(chainids, dtype=object)
segids = np.array(segids, dtype=object)
residx, (resids, resnames, chainids, segids) = change_squash(
(resids, resnames, chainids, segids),
(resids, resnames, chainids, segids),
)
n_residues = len(resids)
attrs.append(Resids(resids))
attrs.append(Resnums(resids.copy()))
attrs.append(Resnames(resnames))
segidx, (segids,) = change_squash((segids,), (segids,))
n_segments = len(segids)
attrs.append(Segids(segids))
#### === OTHERS === ####
bond_values = {}
bond_types = []
bond_orders = []
ub_values = {}
ub_types = []
angle_values = {}
angle_types = []
dihedral_values = {}
dihedral_types = []
improper_values = {}
improper_types = []
cmap_values = {}
cmap_types = []
for bond in structure.bonds:
idx = (bond.atom1.idx, bond.atom2.idx)
if idx not in bond_values:
bond_values[idx] = ([bond], [bond.order])
else:
bond_values[idx][0].append(bond)
bond_values[idx][1].append(bond.order)
try:
bond_values, values = zip(*list(bond_values.items()))
except ValueError:
bond_values, bond_types, bond_orders = [], [], []
else:
bond_types, bond_orders = zip(*values)
bond_types = list(map(squash_identical, bond_types))
bond_orders = list(map(squash_identical, bond_orders))
attrs.append(
Bonds(
bond_values, types=bond_types, guessed=False, order=bond_orders
)
)
for pmdlist, na, values, types in (
(structure.urey_bradleys, 2, ub_values, ub_types),
(structure.angles, 3, angle_values, angle_types),
(structure.dihedrals, 4, dihedral_values, dihedral_types),
(structure.impropers, 4, improper_values, improper_types),
(structure.cmaps, 5, cmap_values, cmap_types),
):
for p in pmdlist:
atoms = ["atom{}".format(i) for i in range(1, na + 1)]
idx = tuple(getattr(p, a).idx for a in atoms)
if idx not in values:
values[idx] = [p]
else:
values[idx].append(p)
for dct, Attr in (
(ub_values, UreyBradleys),
(angle_values, Angles),
(dihedral_values, Dihedrals),
(improper_values, Impropers),
(cmap_values, CMaps),
):
try:
vals, types = zip(*list(dct.items()))
except ValueError:
vals, types = [], []
types = list(map(squash_identical, types))
attrs.append(Attr(vals, types=types, guessed=False, order=None))
top = Topology(
n_atoms,
n_residues,
n_segments,
attrs=attrs,
atom_resindex=residx,
residue_segindex=segidx,
)
return top
|