File: TRJ.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (1256 lines) | stat: -rw-r--r-- 50,107 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""AMBER trajectories --- :mod:`MDAnalysis.coordinates.TRJ`
========================================================

AMBER_ can write :ref:`ASCII trajectories<ascii-trajectories>` ("traj") and
:ref:`binary trajectories<netcdf-trajectories>` ("netcdf"). MDAnalysis supports
reading of both formats and writing for the binary trajectories.

Note
----
Support for AMBER is still somewhat *experimental* and feedback and
contributions are highly appreciated. Use the `Issue Tracker`_ or get in touch
on the `GitHub Discussions`_.


.. rubric:: Units

AMBER trajectories are assumed to be in the following units:

* lengths in Angstrom (Å)
* time in ps (but see below)


.. _netcdf-trajectories:

Binary NetCDF trajectories
--------------------------

The `AMBER netcdf`_ format make use of NetCDF_ (Network Common Data
Form) format. Such binary trajectories are recognized in MDAnalysis by
the '.ncdf' suffix and read by the :class:`NCDFReader`.

Binary trajectories can also contain velocities and forces, and can record the
exact time
step. In principle, the trajectories can be in different units than the AMBER
defaults of ångström and picoseconds but at the moment MDAnalysis only supports
those and will raise a :exc:`NotImplementedError` if anything else is detected.

.. autoclass:: NCDFReader
   :members:

.. autoclass:: NCDFWriter
   :members:

.. autoclass:: NCDFPicklable
   :members:

.. _ascii-trajectories:

ASCII TRAJ trajectories
-----------------------

ASCII AMBER_ TRJ coordinate files (as defined in `AMBER TRJ format`_)
are handled by the :class:`TRJReader`. It is also possible to directly
read *bzip2* or *gzip* compressed files.

AMBER ASCII trajectories are recognised by the suffix '.trj',
'.mdcrd' or '.crdbox (possibly with an additional '.gz' or '.bz2').

.. Note::

   In the AMBER community, these trajectories are often saved with the
   suffix '.crd' but this extension conflicts with the CHARMM CRD
   format and MDAnalysis *will not correctly autodetect AMBER ".crd"
   trajectories*. Instead, explicitly provide the ``format="TRJ"``
   argument to :class:`~MDAnalysis.core.universe.Universe`::

     u = MDAnalysis.Universe("top.prmtop", "traj.crd", format="TRJ")

   In this way, the AMBER :class:`TRJReader` is used.


.. rubric:: Limitations

* Periodic boxes are only stored as box lengths A, B, C in an AMBER
  trajectory; the reader always assumes that these are orthorhombic
  boxes.

* The trajectory does not contain time information so we simply set
  the time step to 1 ps (or the user could provide it as kwarg *dt*)

* Trajectories with fewer than 4 atoms probably fail to be read (BUG).

* If the trajectory contains exactly *one* atom then it is always
  assumed to be non-periodic (for technical reasons).

* Velocities are currently *not supported* as ASCII trajectories.

.. autoclass:: TRJReader
   :members:



.. Links

.. _AMBER: http://ambermd.org
.. _AMBER TRJ format: https://ambermd.org/FileFormats.php#trajectory
..    The formats page was archived as
..    http://www.webcitation.org/query?url=http%3A%2F%2Fambermd.org%2Fformats.html&date=2018-02-11
..    Use the archived version if the original (https://ambermd.org/FileFormats.php#trajectory) disappears. [orbeckst]
.. _AMBER netcdf format: http://ambermd.org/netcdf/nctraj.xhtml
..    The formats page was archived as
..    http://www.webcitation.org/query?url=http%3A%2F%2Fambermd.org%2Fnetcdf%2Fnctraj.xhtml&date=2018-02-11
..    Use the archived version if the original disappears. [orbeckst]
.. _AMBER netcdf: http://ambermd.org/netcdf/nctraj.xhtml
.. _NetCDF: http://www.unidata.ucar.edu/software/netcdf
.. _Issue Tracker: https://github.com/MDAnalysis/mdanalysis/issues
.. _GitHub Discussions: https://github.com/MDAnalysis/mdanalysis/discussions

"""
import scipy.io.netcdf
import numpy as np
import warnings
import errno
import logging
from math import isclose

import MDAnalysis
from .timestep import Timestep
from . import base
from ..lib import util
from ..lib.util import store_init_arguments
logger = logging.getLogger("MDAnalysis.coordinates.AMBER")


try:
    import netCDF4
except ImportError:
    netCDF4 = None
    logger.warning("netCDF4 is not available. Writing AMBER ncdf files will be slow.")


class TRJReader(base.ReaderBase):
    """AMBER trajectory reader.

    Reads the ASCII formatted `AMBER TRJ format`_. Periodic box information
    is auto-detected.

    The number of atoms in a timestep *must* be provided in the `n_atoms`
    keyword because it is not stored in the trajectory header and cannot be
    reliably autodetected. The constructor raises a :exc:`ValueError` if
    `n_atoms` is left at its default value of ``None``.

    The length of a timestep is not stored in the trajectory itself but can
    be set by passing the `dt` keyword argument to the constructor; it
    is assumed to be in ps. The default value is 1 ps.

    .. _AMBER TRJ format: https://ambermd.org/FileFormats.php#trajectory

    .. versionchanged:: 0.11.0
       Frames now 0-based instead of 1-based.
       kwarg `delta` renamed to `dt`, for uniformity with other Readers
    """
    format = ['TRJ', 'MDCRD', 'CRDBOX']
    units = {'time': 'ps', 'length': 'Angstrom'}
    _Timestep = Timestep

    @store_init_arguments
    def __init__(self, filename, n_atoms=None, **kwargs):
        super(TRJReader, self).__init__(filename, **kwargs)
        if n_atoms is None:
            raise ValueError("AMBER TRJ reader REQUIRES the n_atoms keyword")
        self._n_atoms = n_atoms
        self._n_frames = None

        self.trjfile = None  # have _read_next_timestep() open it properly!
        self.ts = self._Timestep(self.n_atoms, **self._ts_kwargs)

        # FORMAT(10F8.3)  (X(i), Y(i), Z(i), i=1,NATOM)
        self.default_line_parser = util.FORTRANReader("10F8.3")
        self.lines_per_frame = int(np.ceil(3.0 * self.n_atoms / len(
            self.default_line_parser)))
        # The last line per frame might have fewer than 10
        # We determine right away what parser we need for the last
        # line because it will be the same for all frames.
        last_per_line = 3 * self.n_atoms % len(self.default_line_parser)
        self.last_line_parser = util.FORTRANReader("{0:d}F8.3".format(
            last_per_line))

        # FORMAT(10F8.3)  BOX(1), BOX(2), BOX(3)
        # is this always on a separate line??
        self.box_line_parser = util.FORTRANReader("3F8.3")

        # Now check for box
        self._detect_amber_box()

        # open file, read first frame
        self._read_next_timestep()

    def _read_frame(self, frame):
        if self.trjfile is None:
            self.open_trajectory()
        self.trjfile.seek(self._offsets[frame])
        self.ts.frame = frame - 1  # gets +1'd in _read_next
        return self._read_next_timestep()

    def _read_next_timestep(self):
        # FORMAT(10F8.3)  (X(i), Y(i), Z(i), i=1,NATOM)
        ts = self.ts
        if self.trjfile is None:
            self.open_trajectory()

        # Read coordinat frame:
        # coordinates = numpy.zeros(3*self.n_atoms, dtype=np.float32)
        _coords = []
        for number, line in enumerate(self.trjfile):
            try:
                _coords.extend(self.default_line_parser.read(line))
            except ValueError:
                # less than 10 entries on the line:
                _coords.extend(self.last_line_parser.read(line))
            if number == self.lines_per_frame - 1:
                # read all atoms that are there in this frame
                break
        if _coords == []:
            # at the end of the stream (the loop has not been entered)
            raise EOFError

        # Read box information
        if self.periodic:
            line = next(self.trjfile)
            box = self.box_line_parser.read(line)
            ts.dimensions = box + [90., 90., 90.]  # assumed

        # probably slow ... could be optimized by storing the coordinates in
        # X,Y,Z lists or directly filling the array; the array/reshape is not
        # good because it creates an intermediate array
        ts._pos[:] = np.array(_coords).reshape(self.n_atoms, 3)
        ts.frame += 1
        return ts

    def _detect_amber_box(self):
        """Detecting a box in a AMBER trajectory

        Rewind trajectory and check for potential box data
        after the first frame.

        Set :attr:`TRJReader.periodic` to ``True`` if box was
        found, ``False`` otherwise.

        Only run at the beginning as it *rewinds* the trajctory.

         - see if there's data after the atoms have been read that looks
           like::

             FORMAT(10F8.3)  BOX(1), BOX(2), BOX(3)
             BOX    : size of periodic box

         - this WILL fail if we have exactly 1 atom in the trajectory because
           there's no way to distinguish the coordinates from the box
           so for 1 atom we always assume no box

        .. TODO:: needs a Timestep that knows about AMBER unitcells!
        """
        if self.n_atoms == 1:
            # for 1 atom we cannot detect the box with the current approach
            self.periodic = False  # see _read_next_timestep()!
            wmsg = "Trajectory contains a single atom: assuming periodic=False"
            warnings.warn(wmsg)
            return False

        self._reopen()
        self.periodic = False  # make sure that only coordinates are read
        self._read_next_timestep()
        ts = self.ts
        # TODO: what do we do with 1-frame trajectories? Try..except EOFError?
        line = next(self.trjfile)
        nentries = self.default_line_parser.number_of_matches(line)
        if nentries == 3:
            self.periodic = True
            ts.dimensions = self.box_line_parser.read(line) + [90., 90., 90.]
        else:
            self.periodic = False
        self.close()
        return self.periodic

    @property
    def n_frames(self):
        """Number of frames (obtained from reading the whole trajectory)."""
        if self._n_frames is not None:  # return cached value
            return self._n_frames
        try:
            self._n_frames = self._read_trj_n_frames(self.filename)
        except IOError:
            return 0
        else:
            return self._n_frames

    def _read_trj_n_frames(self, filename):
        lpf = self.lines_per_frame
        if self.periodic:
            lpf += 1

        self._offsets = offsets = []
        counter = 0
        with util.openany(self.filename) as f:
            line = f.readline()  # ignore first line
            while line:
                if counter % lpf == 0:
                    offsets.append(f.tell())
                line = f.readline()
                counter += 1
        offsets.pop()  # last offset is EOF
        return len(offsets)

    @property
    def n_atoms(self):
        return self._n_atoms

    def _reopen(self):
        self.close()
        self.open_trajectory()

    def open_trajectory(self):
        """Open the trajectory for reading and load first frame."""
        self.trjfile = util.anyopen(self.filename)
        self.header = self.trjfile.readline()  # ignore first line
        if len(self.header.rstrip()) > 80:
            # Chimera uses this check
            raise OSError(
                "Header of AMBER formatted trajectory has more than 80 chars. "
                "This is probably not a AMBER trajectory.")
        # reset ts
        ts = self.ts
        ts.frame = -1

        return self.trjfile

    def close(self):
        """Close trj trajectory file if it was open."""
        if self.trjfile is None:
            return
        self.trjfile.close()
        self.trjfile = None


class NCDFReader(base.ReaderBase):
    """Reader for `AMBER NETCDF format`_ (version 1.0).

    AMBER binary trajectories are automatically recognised by the
    file extension ".ncdf".

    The number of atoms (`n_atoms`) does not have to be provided as it can
    be read from the trajectory. The trajectory reader can randomly access
    frames and therefore supports direct indexing (with 0-based frame
    indices) and full-feature trajectory iteration, including slicing.

    Velocities are autodetected and read into the
    :attr:`Timestep._velocities` attribute.

    Forces are autodetected and read into the
    :attr:`Timestep._forces` attribute.

    Periodic unit cell information is detected and used to populate the
    :attr:`Timestep.dimensions` attribute. (If no unit cell is available in
    the trajectory, then :attr:`Timestep.dimensions` will return
    ``[0,0,0,0,0,0]``).

    Current limitations:

    * only trajectories with time in ps and lengths in Angstroem are processed

    The NCDF reader uses :mod:`scipy.io.netcdf` and therefore :mod:`scipy` must
    be installed. It supports the *mmap* keyword argument (when reading):
    ``mmap=True`` is memory efficient and directly maps the trajectory on disk
    to memory (using the :class:`~mmap.mmap`); ``mmap=False`` may consume large
    amounts of memory because it loads the whole trajectory into memory but it
    might be faster. The default is ``mmap=None`` and then default behavior of
    :class:`scipy.io.netcdf_file` prevails, i.e. ``True`` when
    *filename* is a file name, ``False`` when *filename* is a file-like object.

    .. _AMBER NETCDF format: http://ambermd.org/netcdf/nctraj.xhtml

    See Also
    --------
    :class:`NCDFWriter`


    .. versionadded: 0.7.6
    .. versionchanged:: 0.10.0
       Added ability to read Forces
    .. versionchanged:: 0.11.0
       Frame labels now 0-based instead of 1-based.
       kwarg `delta` renamed to `dt`, for uniformity with other Readers.
    .. versionchanged:: 0.17.0
       Uses :mod:`scipy.io.netcdf` and supports the *mmap* kwarg.
    .. versionchanged:: 0.20.0
       Now reads scale_factors for all expected AMBER convention variables.
       Timestep variables now adhere standard MDAnalysis units, with lengths
       of angstrom, time of ps, velocity of angstrom/ps and force of
       kJ/(mol*Angstrom). It is noted that with 0.19.2 and earlier versions,
       velocities would have often been reported in values of angstrom/AKMA
       time units instead (Issue #2323).
    .. versionchanged:: 1.0.0
       Support for reading `degrees` units for `cell_angles` has now been
       removed (Issue #2327)
    .. versionchanged:: 2.0.0
       Now use a picklable :class:`scipy.io.netcdf_file`--
       :class:`NCDFPicklable`.
       Reading of `dt` now defaults to 1.0 ps if `dt` cannot be extracted from
       the first two frames of the trajectory.
       :meth:`Writer` now also sets `convert_units`, `velocities`, `forces` and
       `scale_factor` information for the :class:`NCDFWriter`.

    """

    format = ['NCDF', 'NC']
    multiframe = True
    version = "1.0"
    units = {'time': 'ps',
             'length': 'Angstrom',
             'velocity': 'Angstrom/ps',
             'force': 'kcal/(mol*Angstrom)'}

    _Timestep = Timestep

    @store_init_arguments
    def __init__(self, filename, n_atoms=None, mmap=None, **kwargs):

        self._mmap = mmap

        super(NCDFReader, self).__init__(filename, **kwargs)

        # ensure maskandscale is off so we don't end up double scaling
        self.trjfile = NCDFPicklable(self.filename,
                                     mmap=self._mmap,
                                     maskandscale=False)

        # AMBER NetCDF files should always have a convention
        try:
            conventions = self.trjfile.Conventions
            if not ('AMBER' in conventions.decode('utf-8').split(',') or
                    'AMBER' in conventions.decode('utf-8').split()):
                errmsg = ("NCDF trajectory {0} does not conform to AMBER "
                          "specifications, "
                          "http://ambermd.org/netcdf/nctraj.xhtml "
                          "('AMBER' must be one of the token in attribute "
                          "Conventions)".format(self.filename))
                logger.fatal(errmsg)
                raise TypeError(errmsg)
        except AttributeError:
            errmsg = "NCDF trajectory {0} is missing Conventions".format(
                      self.filename)
            logger.fatal(errmsg)
            raise ValueError(errmsg) from None

        # AMBER NetCDF files should also have a ConventionVersion
        try:
            ConventionVersion = self.trjfile.ConventionVersion.decode('utf-8')
            if not ConventionVersion == self.version:
                wmsg = ("NCDF trajectory format is {0!s} but the reader "
                        "implements format {1!s}".format(
                         ConventionVersion, self.version))
                warnings.warn(wmsg)
                logger.warning(wmsg)
        except AttributeError:
            errmsg = "NCDF trajectory {0} is missing ConventionVersion".format(
                      self.filename)
            raise ValueError(errmsg) from None

        # The AMBER NetCDF standard enforces 64 bit offsets
        if not self.trjfile.version_byte == 2:
            errmsg = ("NCDF trajectory {0} does not conform to AMBER "
                      "specifications, as detailed in "
                      "https://ambermd.org/netcdf/nctraj.xhtml "
                      "(NetCDF file does not use 64 bit offsets "
                      "[version_byte = 2])".format(self.filename))
            logger.fatal(errmsg)
            raise TypeError(errmsg)

        # The AMBER NetCDF standard enforces 3D coordinates
        try:
            if not self.trjfile.dimensions['spatial'] == 3:
                errmsg = "Incorrect spatial value for NCDF trajectory file"
                raise TypeError(errmsg)
        except KeyError:
            errmsg = "NCDF trajectory does not contain spatial dimension"
            raise ValueError(errmsg) from None

        # AMBER NetCDF specs require program and programVersion. Warn users
        # if those attributes do not exist
        if not (hasattr(self.trjfile, 'program') and
                hasattr(self.trjfile, 'programVersion')):
            wmsg = ("NCDF trajectory {0} may not fully adhere to AMBER "
                    "standards as either the `program` or `programVersion` "
                    "attributes are missing".format(self.filename))
            warnings.warn(wmsg)
            logger.warning(wmsg)

        try:
            self.n_atoms = self.trjfile.dimensions['atom']
            if n_atoms is not None and n_atoms != self.n_atoms:
                errmsg = ("Supplied n_atoms ({0}) != natom from ncdf ({1}). "
                          "Note: n_atoms can be None and then the ncdf value "
                          "is used!".format(n_atoms, self.n_atoms))
                raise ValueError(errmsg)
        except KeyError:
            errmsg = ("NCDF trajectory {0} does not contain atom "
                      "information".format(self.filename))
            raise ValueError(errmsg) from None

        try:
            self.n_frames = self.trjfile.dimensions['frame']
            # example trajectory when read with scipy.io.netcdf has
            # dimensions['frame'] == None (indicating a record dimension that
            # can grow) whereas if read with netCDF4 I get
            # len(dimensions['frame']) ==  10: in any case, we need to get
            # the number of frames from somewhere such as the time variable:
            if self.n_frames is None:
                self.n_frames = self.trjfile.variables['coordinates'].shape[0]
        except KeyError:
            errmsg = (f"NCDF trajectory {self.filename} does not contain "
                      f"frame information")
            raise ValueError(errmsg) from None

        try:
            self.remarks = self.trjfile.title
        except AttributeError:
            self.remarks = ""
        # other metadata (*= requd):
        # - application           AMBER
        #

        # checks for not-implemented features (other units would need to be
        # hacked into MDAnalysis.units)
        try:
            self._verify_units(self.trjfile.variables['time'].units, 'picosecond')
            self.has_time = True
        except KeyError:
            self.has_time = False
            wmsg = ("NCDF trajectory does not contain `time` information;"
                    " `time` will be set as an increasing index")  
            warnings.warn(wmsg)
            logger.warning(wmsg)


        self._verify_units(self.trjfile.variables['coordinates'].units,
                           'angstrom')

        # Check for scale_factor attributes for all data variables and
        # store this to multiply through later (Issue #2323)
        self.scale_factors = {'time': None,
                              'cell_lengths': None,
                              'cell_angles': None,
                              'coordinates': None,
                              'velocities': None,
                              'forces': None}

        for variable in self.trjfile.variables:
            if hasattr(self.trjfile.variables[variable], 'scale_factor'):
                if variable in self.scale_factors:
                    scale_factor = self.trjfile.variables[variable].scale_factor
                    if not isinstance(scale_factor, (float, np.floating)):
                        raise TypeError(f"{scale_factor} is not a float")
                    self.scale_factors[variable] = scale_factor
                else:
                    errmsg = ("scale_factors for variable {0} are "
                              "not implemented".format(variable))
                    raise NotImplementedError(errmsg)

        self.has_velocities = 'velocities' in self.trjfile.variables
        if self.has_velocities:
            self._verify_units(self.trjfile.variables['velocities'].units,
                               'angstrom/picosecond')

        self.has_forces = 'forces' in self.trjfile.variables
        if self.has_forces:
            self._verify_units(self.trjfile.variables['forces'].units,
                               'kilocalorie/mole/angstrom')

        self.periodic = 'cell_lengths' in self.trjfile.variables
        if self.periodic:
            self._verify_units(self.trjfile.variables['cell_lengths'].units,
                               'angstrom')
            # As of v1.0.0 only `degree` is accepted as a unit
            cell_angle_units = self.trjfile.variables['cell_angles'].units
            self._verify_units(cell_angle_units, 'degree')

        self._current_frame = 0

        self.ts = self._Timestep(self.n_atoms,
                                 velocities=self.has_velocities,
                                 forces=self.has_forces,
                                 reader=self,  # for dt
                                 **self._ts_kwargs)

        # load first data frame
        self._read_frame(0)

    @staticmethod
    def _verify_units(eval_unit, expected_units):
        if eval_unit.decode('utf-8') != expected_units:
            errmsg = ("NETCDFReader currently assumes that the trajectory "
                      "was written in units of {0} instead of {1}".format(
                       eval_unit.decode('utf-8'), expected_units))
            raise NotImplementedError(errmsg)

    @staticmethod
    def parse_n_atoms(filename, **kwargs):
        with scipy.io.netcdf_file(filename, mmap=None) as f:
            n_atoms = f.dimensions['atom']
        return n_atoms

    def _get_var_and_scale(self, variable, frame):
        """Helper function to get variable at given frame from NETCDF file and
        scale if necessary.

        Note
        ----
        If scale_factor is 1.0 within numerical precision then we don't apply
        the scaling.
        """
        scale_factor = self.scale_factors[variable]
        if scale_factor is None or isclose(scale_factor, 1):
            return self.trjfile.variables[variable][frame]
        else:
            return self.trjfile.variables[variable][frame] * scale_factor

    def _read_frame(self, frame):
        ts = self.ts

        if self.trjfile is None:
            raise IOError("Trajectory is closed")
        if np.dtype(type(frame)) != np.dtype(int):
            # convention... for netcdf could also be a slice
            raise TypeError("frame must be a positive integer or zero")
        if frame >= self.n_frames or frame < 0:
            raise IndexError("frame index must be 0 <= frame < {0}".format(
                self.n_frames))
        # note: self.trjfile.variables['coordinates'].shape == (frames, n_atoms, 3)
        ts._pos[:] = self._get_var_and_scale('coordinates', frame)
        if self.has_time:
            ts.time = self._get_var_and_scale('time', frame)
        if self.has_velocities:
            ts._velocities[:] = self._get_var_and_scale('velocities', frame)
        if self.has_forces:
            ts._forces[:] = self._get_var_and_scale('forces', frame)
        if self.periodic:
            unitcell = np.zeros(6)
            unitcell[:3] = self._get_var_and_scale('cell_lengths', frame)
            unitcell[3:] = self._get_var_and_scale('cell_angles', frame)
            ts.dimensions = unitcell
        if self.convert_units:
            self.convert_pos_from_native(ts._pos)  # in-place !
            self.convert_time_from_native(
                ts.time)  # in-place ! (hope this works...)
            if self.has_velocities:
                self.convert_velocities_from_native(ts._velocities,
                                                    inplace=True)
            if self.has_forces:
                self.convert_forces_from_native(ts._forces, inplace=True)
            if self.periodic:
                # in-place ! (only lengths)
                self.convert_pos_from_native(ts.dimensions[:3])
        ts.frame = frame  # frame labels are 0-based
        self._current_frame = frame
        return ts

    def _reopen(self):
        self._current_frame = -1

    def _read_next_timestep(self, ts=None):
        if ts is None:
            ts = self.ts
        try:
            return self._read_frame(self._current_frame + 1)
        except IndexError:
            raise IOError from None

    def _get_dt(self):
        """Gets dt based on the time difference between the first and second
        frame. If missing (i.e. an IndexError is triggered), raises an
        AttributeError which triggers the default 1 ps return of dt().
        """
        try:
            t1 = self.trjfile.variables['time'][1]
            t0 = self.trjfile.variables['time'][0]
        except (IndexError, KeyError):
            raise AttributeError
        return t1 - t0

    def close(self):
        """Close trajectory; any further access will raise an :exc:`IOError`.

        .. Note:: The underlying :mod:`scipy.io.netcdf` module may open netcdf
                  files with :class:`~mmap.mmap` if ``mmap=True`` was
                  set. Hence *any* reference to an array *must* be removed
                  before the file can be closed.

        """
        if self.trjfile is not None:
            self.trjfile.close()
            self.trjfile = None

    def Writer(self, filename, **kwargs):
        """Returns a NCDFWriter for `filename` with the same parameters as this NCDF.

        All values can be changed through keyword arguments.

        Parameters
        ----------
        filename : str
            filename of the output NCDF trajectory
        n_atoms : int (optional)
            number of atoms
        remarks : str (optional)
            string that is stored in the title field
        convert_units : bool (optional)
            ``True``: units are converted to the AMBER base format
        velocities : bool (optional)
            Write velocities into the trajectory
        forces : bool (optional)
            Write forces into the trajectory
        scale_time : float (optional)
            Scale factor for time units
        scale_cell_lengths : float (optional)
            Scale factor for cell lengths
        scale_cell_angles : float (optional)
            Scale factor for cell angles
        scale_coordinates : float (optional)
            Scale factor for coordinates
        scale_velocities : float (optional)
            Scale factor for velocities
        scale_forces : float (optional)
            Scale factor for forces

        Returns
        -------
        :class:`NCDFWriter`
        """
        n_atoms = kwargs.pop('n_atoms', self.n_atoms)
        kwargs.setdefault('remarks', self.remarks)
        kwargs.setdefault('convert_units', self.convert_units)
        kwargs.setdefault('velocities', self.has_velocities)
        kwargs.setdefault('forces', self.has_forces)
        for key in self.scale_factors:
            kwargs.setdefault(f'scale_{key}', self.scale_factors[key])
        return NCDFWriter(filename, n_atoms, **kwargs)


class NCDFWriter(base.WriterBase):
    """Writer for `AMBER NETCDF format`_ (version 1.0).

    AMBER binary trajectories are automatically recognised by the
    file extension ".ncdf" or ".nc".

    Velocities are written out if they are detected in the input
    :class:`Timestep`. The trajectories are always written with ångström
    for the lengths and picoseconds for the time (and hence Å/ps for
    velocities and kilocalorie/mole/Å for forces).

    Scale factor variables for time, velocities, cell lengths, cell angles,
    coordinates, velocities, or forces can be passed into the writer. If so,
    they will be written to the NetCDF file. In this case, the trajectory data
    will be written to the NetCDF file divided by the scale factor value. By
    default, scale factor variables are not written. The only exception is for
    velocities, where it is set to 20.455, replicating the default behaviour of
    AMBER.

    Unit cell information is written if available.

    .. _AMBER NETCDF format: http://ambermd.org/netcdf/nctraj.xhtml


    Parameters
    ----------
    filename : str
        name of output file
    n_atoms : int
        number of atoms in trajectory file
    convert_units : bool (optional)
        ``True``: units are converted to the AMBER base format; [``True``]
    velocities : bool (optional)
        Write velocities into the trajectory [``False``]
    forces : bool (optional)
        Write forces into the trajectory [``False``]
    scale_time : float (optional)
        Scale factor for time units [`None`]
    scale_cell_lengths : float (optional)
        Scale factor for cell lengths [``None``]
    scale_cell_angles : float (optional)
        Scale factor for cell angles [``None``]
    scale_coordinates : float (optional)
        Scale factor for coordinates [``None``]
    scale_velocities : float (optional)
        Scale factor for velocities [20.455]
    scale_forces : float (optional)
        Scale factor for forces [``None``]


    Note
    ----
    MDAnalysis uses :mod:`scipy.io.netcdf` to access AMBER files, which are in
    netcdf 3 format. Although :mod:`scipy.io.netcdf` is very fast at reading
    these files, it is *very* slow when writing, and it becomes slower the
    longer the files are. On the other hand, the netCDF4_ package (which
    requires the compiled netcdf library to be installed) is fast at writing
    but slow at reading. Therefore, we try to use :mod:`netCDF4` for writing if
    available but otherwise fall back to the slower :mod:`scipy.io.netcdf`.

    **AMBER users** might have a hard time getting netCDF4 to work with a
    conda-based installation (as discussed in `Issue #506`_) because of the way
    that AMBER itself handles netcdf: When the AMBER environment is loaded, the
    following can happen when trying to import netCDF4::

      >>> import netCDF4
      Traceback (most recent call last):
        File "<string>", line 1, in <module>
        File "/scratch2/miniconda/envs/py35/lib/python3.5/site-packages/netCDF4/__init__.py", line 3, in <module>
          from ._netCDF4 import *
      ImportError: /scratch2/miniconda/envs/py35/lib/python3.5/site-packages/netCDF4/_netCDF4.cpython-35m-x86_64-linux-gnu.so: undefined symbol: nc_inq_var_fletcher32

    The reason for this (figured out via :program:`ldd`) is that AMBER builds
    its own NetCDF library that it now inserts into :envvar:`LD_LIBRARY_PATH`
    *without the NetCDF4 API and HDF5 bindings*. Since the conda version of
    :mod:`netCDF4` was built against the full NetCDF package, the one
    :program:`ld` tries to link to at runtime (because AMBER requires
    :envvar:`LD_LIBRARY_PATH`) is missing some symbols. Removing AMBER from the
    environment fixes the import but is not really a convenient solution for
    users of AMBER.

    At the moment there is no obvious solution if one wants to use
    :mod:`netCDF4` and AMBER in the same shell session. If you need the fast
    writing capabilities of :mod:`netCDF4` then you need to unload your AMBER
    environment before importing MDAnalysis.


    .. _netCDF4: https://unidata.github.io/netcdf4-python/
    .. _`Issue #506`:
       https://github.com/MDAnalysis/mdanalysis/issues/506#issuecomment-225081416

    Raises
    ------
    FutureWarning
        When writing. The :class:`NCDFWriter` currently does not write any
        `scale_factor` values for the data variables. Whilst not in breach
        of the AMBER NetCDF standard, this behaviour differs from that of
        most AMBER writers, especially for velocities which usually have a
        `scale_factor` of 20.455. In MDAnalysis 2.0, the :class:`NCDFWriter`
        will enforce `scale_factor` writing to either match user inputs (either
        manually defined or via the :class:`NCDFReader`) or those as written by
        AmberTools's :program:`sander` under default operation.

    See Also
    --------
    :class:`NCDFReader`


    .. versionadded: 0.7.6
    .. versionchanged:: 0.10.0
       Added ability to write velocities and forces
    .. versionchanged:: 0.11.0
       kwarg `delta` renamed to `dt`, for uniformity with other Readers
    .. versionchanged:: 0.17.0
       Use fast :mod:`netCDF4` for writing but fall back to slow
       :mod:`scipy.io.netcdf` if :mod:`netCDF4` is not available.
    .. versionchanged:: 0.20.1
       Changes the `cell_angles` unit to the AMBER NetCDF convention standard
       of `degree` instead of the `degrees` written in previous version of
       MDAnalysis (Issue #2327).
    .. versionchanged:: 2.0.0
       ``dt``, ``start``, and ``step`` keywords were unused and are no longer
       set.
       Writing of ``scale_factor`` values has now been implemented. By default
       only velocities write a scale_factor of 20.455 (echoing the behaviour
       seen from AMBER).

    """

    format = ['NC', 'NCDF']
    multiframe = True
    version = "1.0"
    units = {'time': 'ps',
             'length': 'Angstrom',
             'velocity': 'Angstrom/ps',
             'force': 'kcal/(mol*Angstrom)'}

    def __init__(self, filename, n_atoms, remarks=None, convert_units=True,
                 velocities=False, forces=False, scale_time=None,
                 scale_cell_lengths=None, scale_cell_angles=None,
                 scale_coordinates=None, scale_velocities=None,
                 scale_forces=None, **kwargs):
        self.filename = filename
        if n_atoms == 0:
            raise ValueError("NCDFWriter: no atoms in output trajectory")
        self.n_atoms = n_atoms
        # convert length and time to base units on the fly?
        self.convert_units = convert_units

        self.remarks = remarks or "AMBER NetCDF format (MDAnalysis.coordinates.trj.NCDFWriter)"

        self._first_frame = True  # signals to open trajectory
        self.trjfile = None  # open on first write with _init_netcdf()
        self.periodic = None  # detect on first write
        self.has_velocities = velocities
        self.has_forces = forces

        self.scale_factors = {
                'time': scale_time,
                'cell_lengths': scale_cell_lengths,
                'cell_angles': scale_cell_angles,
                'coordinates': scale_coordinates,
                'velocities': scale_velocities,
                'forces': scale_forces}
        # NCDF standard enforces float scale_factors
        for value in self.scale_factors.values():
            if (value is not None) and (
                    not isinstance(value, (float, np.floating))):
                errmsg = f"scale_factor {value} is not a float"
                raise TypeError(errmsg)

        self.curr_frame = 0

    def _init_netcdf(self, periodic=True):
        """Initialize netcdf AMBER 1.0 trajectory.

        The trajectory is opened when the first frame is written
        because that is the earliest time that we can detect if the
        output should contain periodicity information (i.e. the unit
        cell dimensions).

        Based on Joshua Adelman's `netcdf4storage.py`_ in `Issue 109`_ and uses
        Jason Swail's hack from `ParmEd/ParmEd#722`_ to switch between
        :mod:`scipy.io.netcdf` and :mod:`netCDF4`.

        .. _`Issue 109`:
           https://github.com/MDAnalysis/mdanalysis/issues/109
        .. _`netcdf4storage.py`:
           https://storage.googleapis.com/google-code-attachments/mdanalysis/issue-109/comment-2/netcdf4storage.py
        .. _`ParmEd/ParmEd#722`: https://github.com/ParmEd/ParmEd/pull/722

        """
        if not self._first_frame:
            raise IOError(
                errno.EIO,
                "Attempt to write to closed file {0}".format(self.filename))

        if netCDF4:
            ncfile = netCDF4.Dataset(self.filename, 'w',
                                     format='NETCDF3_64BIT')
        else:
            ncfile = scipy.io.netcdf_file(self.filename,
                                          mode='w', version=2,
                                          maskandscale=False)
            wmsg = ("Could not find netCDF4 module. Falling back to MUCH "
                    "slower scipy.io.netcdf implementation for writing.")
            logger.warning(wmsg)
            warnings.warn(wmsg)

        # Set global attributes.
        setattr(ncfile, 'program', 'MDAnalysis.coordinates.TRJ.NCDFWriter')
        setattr(ncfile, 'programVersion', MDAnalysis.__version__)
        setattr(ncfile, 'Conventions', 'AMBER')
        setattr(ncfile, 'ConventionVersion', '1.0')
        setattr(ncfile, 'application', 'MDAnalysis')

        # Create dimensions
        ncfile.createDimension('frame',
                               None)  # unlimited number of steps (can append)
        ncfile.createDimension('atom',
                               self.n_atoms)  # number of atoms in system
        ncfile.createDimension('spatial', 3)  # number of spatial dimensions
        ncfile.createDimension('cell_spatial', 3)  # unitcell lengths
        ncfile.createDimension('cell_angular', 3)  # unitcell angles
        ncfile.createDimension('label', 5)  # needed for cell_angular

        # Create variables.
        coords = ncfile.createVariable('coordinates', 'f4',
                                       ('frame', 'atom', 'spatial'))
        setattr(coords, 'units', 'angstrom')
        if self.scale_factors['coordinates']:
            coords.scale_factor = self.scale_factors['coordinates']

        spatial = ncfile.createVariable('spatial', 'c', ('spatial', ))
        spatial[:] = np.asarray(list('xyz'))

        time = ncfile.createVariable('time', 'f4', ('frame',))
        setattr(time, 'units', 'picosecond')
        if self.scale_factors['time']:
            time.scale_factor = self.scale_factors['time']

        self.periodic = periodic
        if self.periodic:
            cell_lengths = ncfile.createVariable('cell_lengths', 'f8',
                                                 ('frame', 'cell_spatial'))
            setattr(cell_lengths, 'units', 'angstrom')
            if self.scale_factors['cell_lengths']:
                cell_lengths.scale_factor = self.scale_factors['cell_lengths']

            cell_spatial = ncfile.createVariable('cell_spatial', 'c',
                                                 ('cell_spatial', ))
            cell_spatial[:] = np.asarray(list('abc'))

            cell_angles = ncfile.createVariable('cell_angles', 'f8',
                                                ('frame', 'cell_angular'))
            setattr(cell_angles, 'units', 'degree')
            if self.scale_factors['cell_angles']:
                cell_angles.scale_factor = self.scale_factors['cell_angles']

            cell_angular = ncfile.createVariable('cell_angular', 'c',
                                                 ('cell_angular', 'label'))
            cell_angular[:] = np.asarray([list('alpha'), list('beta '), list(
                'gamma')])

        # These properties are optional, and are specified on Writer creation
        if self.has_velocities:
            velocs = ncfile.createVariable('velocities', 'f4',
                                           ('frame', 'atom', 'spatial'))
            setattr(velocs, 'units', 'angstrom/picosecond')
            if self.scale_factors['velocities']:
                velocs.scale_factor = self.scale_factors['velocities']
        if self.has_forces:
            forces = ncfile.createVariable('forces', 'f4',
                                           ('frame', 'atom', 'spatial'))
            setattr(forces, 'units', 'kilocalorie/mole/angstrom')
            if self.scale_factors['forces']:
                forces.scale_factor = self.scale_factors['forces']

        # Important for netCDF4! Disable maskandscale for created variables!
        # Won't work if called before variable creation!
        if netCDF4:
            ncfile.set_auto_maskandscale(False)

        ncfile.sync()
        self._first_frame = False
        self.trjfile = ncfile

    def is_periodic(self, ts):
        """Test if timestep ``ts`` contains a periodic box.

        Parameters
        ----------
        ts : :class:`Timestep`
             :class:`Timestep` instance containing coordinates to
             be written to trajectory file

        Returns
        -------
        bool
            Return ``True`` if `ts` contains a valid simulation box
        """
        return ts.dimensions is not None

    def _write_next_frame(self, ag):
        """Write information associated with ``ag`` at current frame into trajectory

        Parameters
        ----------
        ag : AtomGroup or Universe


        .. versionchanged:: 1.0.0
           Added ability to use either AtomGroup or Universe.
           Renamed from `write_next_timestep` to `_write_next_frame`.
        .. versionchanged:: 2.0.0
           Deprecated support for Timestep argument has now been removed.
           Use AtomGroup or Universe as an input instead.
        """
        try:
            # Atomgroup?
            ts = ag.ts
        except AttributeError:
            try:
                # Universe?
                ts = ag.trajectory.ts
            except AttributeError:
                errmsg = "Input obj is neither an AtomGroup or Universe"
                raise TypeError(errmsg) from None

        if ts.n_atoms != self.n_atoms:
            raise IOError(
                "NCDFWriter: Timestep does not have the correct number of atoms")

        if self.trjfile is None:
            # first time step: analyze data and open trajectory accordingly
            self._init_netcdf(periodic=self.is_periodic(ts))

        return self._write_next_timestep(ts)

    def _set_frame_var_and_scale(self, varname, data):
        """Helper function to set variables and scale them if necessary.

        Note
        ----
        If scale_factor is numerically close to 1.0, the variable data is not
        scaled.
        """
        sfactor = self.scale_factors[varname]
        if sfactor is None or isclose(sfactor, 1):
            self.trjfile.variables[varname][self.curr_frame] = data
        else:
            self.trjfile.variables[varname][self.curr_frame] = data / sfactor

    def _write_next_timestep(self, ts):
        """Write coordinates and unitcell information to NCDF file.

        Do not call this method directly; instead use
        :meth:`write` because some essential setup is done
        there before writing the first frame.

        Based on Joshua Adelman's `netcdf4storage.py`_ in `Issue 109`_.

        .. _`Issue 109`:
           https://github.com/MDAnalysis/mdanalysis/issues/109
        .. _`netcdf4storage.py`:
           https://storage.googleapis.com/google-code-attachments/mdanalysis/issue-109/comment-2/netcdf4storage.py


        .. versionchanged:: 2.0.0
           Can now write scale_factors, and scale variables accordingly.
        """
        pos = ts._pos
        time = ts.time
        unitcell = ts.dimensions

        if self.convert_units:
            # make a copy of the scaled positions so that the in-memory
            # timestep is not changed (would have lead to wrong results if
            # analysed *after* writing a time step to disk). The new
            # implementation could lead to memory problems and/or slow-down for
            # very big systems because we temporarily create a new array pos
            # for each frame written
            pos = self.convert_pos_to_native(pos, inplace=False)
            time = self.convert_time_to_native(time, inplace=False)
            unitcell = self.convert_dimensions_to_unitcell(ts)

        # write step
        # coordinates
        self._set_frame_var_and_scale('coordinates', pos)

        # time
        self._set_frame_var_and_scale('time', time)

        # unitcell
        if self.periodic:
            # cell lengths
            self._set_frame_var_and_scale('cell_lengths', unitcell[:3])

            self._set_frame_var_and_scale('cell_angles', unitcell[3:])

        # velocities
        if self.has_velocities:
            velocities = ts._velocities
            if self.convert_units:
                velocities = self.convert_velocities_to_native(
                    velocities, inplace=False)

            self._set_frame_var_and_scale('velocities', velocities)

        # forces
        if self.has_forces:
            forces = ts._forces
            if self.convert_units:
                forces = self.convert_forces_to_native(
                    forces, inplace=False)

            self._set_frame_var_and_scale('forces', forces)

        self.trjfile.sync()
        self.curr_frame += 1

    def close(self):
        if self.trjfile is not None:
            self.trjfile.close()
            self.trjfile = None


class NCDFPicklable(scipy.io.netcdf_file):
    """NetCDF file object (read-only) that can be pickled.

    This class provides a file-like object (as returned by
    :class:`scipy.io.netcdf_file`) that,
    unlike standard Python file objects,
    can be pickled. Only read mode is supported.

    When the file is pickled, filename and mmap of the open file handle in
    the file are saved. On unpickling, the file is opened by filename,
    and the mmap file is loaded.
    This means that for a successful unpickle, the original file still has to
    be accessible with its filename.


    .. note::
        This class subclasses :class:`scipy.io.netcdf_file`, please
        see the `scipy netcdf API documentation`_ for more information on
        the parameters and how the class behaviour.


    Parameters
    ----------
    filename : str or file-like
        a filename given a text or byte string.
    mmap : None or bool, optional
        Whether to mmap `filename` when reading. True when `filename`
        is a file name, False when `filename` is a file-like object.
    version : {1, 2}, optional
        Sets the netcdf file version to read / write. 1 is classic, 2 is
        64-bit offset format. Default is 1 (but note AMBER ncdf *requires* 2).
    maskandscale : bool, optional
        Whether to automatically scale and mask data. Default is False.

    Example
    -------
    ::

        f = NCDFPicklable(NCDF)
        print(f.variables['coordinates'].data)
        f.close()

    can also be used as context manager::

        with NCDFPicklable(NCDF) as f:
            print(f.variables['coordinates'].data)

    See Also
    ---------
    :class:`MDAnalysis.lib.picklable_file_io.FileIOPicklable`
    :class:`MDAnalysis.lib.picklable_file_io.BufferIOPicklable`
    :class:`MDAnalysis.lib.picklable_file_io.TextIOPicklable`
    :class:`MDAnalysis.lib.picklable_file_io.GzipPicklable`
    :class:`MDAnalysis.lib.picklable_file_io.BZ2Picklable`


    .. versionadded:: 2.0.0


    .. _`scipy netcdf API documentation`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_file.html
    """
    def __getstate__(self):
        return (self.filename, self.use_mmap, self.version_byte,
                self.maskandscale)

    def __setstate__(self, args):
        self.__init__(args[0], mmap=args[1], version=args[2],
                      maskandscale=args[3])