File: timestep.pyx

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (974 lines) | stat: -rw-r--r-- 30,978 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
#

# cython: embedsignature=True


"""
Timestep Class --- :mod:`MDAnalysis.coordinates.timestep`
============================================================

Derive other Timestep, classes from the classes in this module.
The derived classes must follow the :ref:`Trajectory API`.

Timestep
--------

A :class:`Timestep` holds information for the current time frame in
the trajectory. It is one of the central data structures in
MDAnalysis.

.. class:: Timestep

   .. automethod:: __init__
   .. automethod:: from_coordinates
   .. automethod:: from_timestep
   .. autoattribute:: n_atoms
   .. attribute:: frame

      frame number (0-based)

      .. versionchanged:: 0.11.0
         Frames now 0-based; was 1-based


   .. autoattribute:: time
   .. autoattribute:: dt
   .. autoattribute:: positions
   .. autoattribute:: velocities
   .. autoattribute:: forces
   .. autoattribute:: has_positions
   .. autoattribute:: has_velocities
   .. autoattribute:: has_forces
   .. attribute:: _pos

      :class:`numpy.ndarray` of dtype :class:`~numpy.float32` of shape
      (*n_atoms*, 3) and internal C order, holding the raw
      cartesian coordinates (in MDAnalysis units, i.e. Å).

      .. Note::

         Normally one does not directly access :attr:`_pos` but uses
         the :attr:`~MDAnalysis.core.groups.AtomGroup.positions`
         attribute of a :class:`~MDAnalysis.core.groups.AtomGroup` but
         sometimes it can be faster to directly use the raw
         coordinates. Any changes to this array are immediately
         reflected in the atom positions. If the frame is written to a new
         trajectory then the coordinates are changed. If a new
         trajectory frame is loaded, then *all* contents of
         :attr:`_pos` are overwritten.

   .. attribute:: _velocities

      :class:`numpy.ndarray` of dtype :class:`~numpy.float32`. of shape
      (*n_atoms*, 3), holding the raw velocities (in MDAnalysis
      units, i.e., Å/ps).

      .. Note::

         Normally velocities are accessed through the
         :attr:`Timestep.velocities` attribute or the
         :attr:`~MDAnalysis.core.groups.AtomGroup.velocities`
         attribute of an :class:`~MDAnalysis.core.groups.AtomGroup`

         :attr:`~Timestep._velocities` only exists if the :attr:`has_velocities`
         flag is ``True``.

      .. versionadded:: 0.7.5

   .. attribute:: _forces

      :class:`numpy.ndarray` of dtype :class:`~numpy.float32`. of shape
      (*n_atoms*, 3), holding the forces

      :attr:`~Timestep._forces` only exists if :attr:`has_forces`
      is ``True``.

      .. versionadded:: 0.11.0
         Added as optional to :class:`Timestep`

   .. autoattribute:: dtype
   .. autoattribute:: dimensions
   .. autoattribute:: triclinic_dimensions
   .. autoattribute:: volume
   .. attribute:: data

      :class:`dict` that holds arbitrary per Timestep data

      .. versionadded:: 0.11.0

   .. automethod:: __getitem__
   .. automethod:: __eq__
   .. automethod:: __iter__
   .. automethod:: copy
   .. automethod:: copy_slice

"""


from ..lib.util import Namespace
from ..exceptions import NoDataError
from . import core
from libc.stdint cimport uint64_t
import weakref
import warnings
import copy
import numbers

import numpy as np
cimport numpy as cnp
cnp.import_array()


cdef class Timestep:
    """Timestep data for one frame

    :Methods:

      ``ts = Timestep(n_atoms)``

         create a timestep object with space for n_atoms


    .. versionchanged:: 0.11.0
       Added :meth:`from_timestep` and :meth:`from_coordinates` constructor
       methods.
       :class:`Timestep` init now only accepts integer creation.
       :attr:`n_atoms` now a read only property.
       :attr:`frame` now 0-based instead of 1-based.
       Attributes `status` and `step` removed.
    .. versionchanged:: 2.0.0
       Timestep now can be (un)pickled. Weakref for Reader
       will be dropped.
       Timestep now stores in to numpy array memory in 'C' order rather than
       'F' (Fortran).
    .. versionchanged:: 2.3.0
        Timestep is now a Cython extension type.
        All arrays are now forced to be C contiguous using the NumPy C API.
    """

    order = 'C'

    def __cinit__(self, uint64_t n_atoms, **kwargs):
        """Initialise C++ level parameters of a Timestep

        Parameters
        ----------
        n_atoms : uint64
          The total number of atoms this Timestep describes


        .. versionadded:: 2.3.0
           Initialise C++ level parameters
        """
        # c++ level objects
        self._n_atoms = n_atoms
        self.frame = -1

        # NOTE  This is currently hardcoded to match MDA always casting to F32
        # meaning the DTYPE set in the args is not respected.
        # to fix remove hardcode with introspection of a dtype kwarg following
        # discussion of appropriate casting rules
        self._typenum = cnp.NPY_FLOAT32

        self._has_positions = False
        self._has_velocities = False
        self._has_forces = False

        # track whether array has been allocated correct size
        self._positions_alloc = False
        self._velocities_alloc = False
        self._forces_alloc = False

        # use this to create numpy zeros and empties of the right shape using
        # NumPy C API
        self._particle_dependent_dim[0] = self._n_atoms
        self._particle_dependent_dim[1] = 3

        # unitcell uses a temp only as its size can vary
        cdef cnp.npy_intp unitcell_dim_tmp[1]
        unitcell_dim_tmp[0] = 6

        # use temps so that we don't have to allocate a bunch of empty
        # arrays of large size, eg for vel and frc
        cdef cnp.npy_intp particle_dependent_dim_tmp[2]
        particle_dependent_dim_tmp[0] = 0
        particle_dependent_dim_tmp[1] = 0

        # these must be initialised, we initialise size 0
        self._unitcell = cnp.PyArray_ZEROS(
            1, unitcell_dim_tmp, self._typenum, 0)
        self._pos = cnp.PyArray_EMPTY(
            2, particle_dependent_dim_tmp, self._typenum, 0)
        self._velocities = cnp.PyArray_EMPTY(
            2, particle_dependent_dim_tmp, self._typenum, 0)
        self._forces = cnp.PyArray_EMPTY(
            2, particle_dependent_dim_tmp, self._typenum, 0)

    def __init__(self, uint64_t n_atoms, **kwargs):
        """Create a Timestep, representing a frame of a trajectory

        Parameters
        ----------
        n_atoms : uint64
          The total number of atoms this Timestep describes
        positions : bool, optional
          Whether this Timestep has position information [``True``]
        velocities : bool (optional)
          Whether this Timestep has velocity information [``False``]
        forces : bool (optional)
          Whether this Timestep has force information [``False``]
        reader : Reader (optional)
          A weak reference to the owning Reader.  Used for
          when attributes require trajectory manipulation (e.g. dt)
        dt : float (optional)
          The time difference between frames (ps).  If :attr:`time`
          is set, then `dt` will be ignored.
        time_offset : float (optional)
          The starting time from which to calculate time (in ps)


        .. versionchanged:: 0.11.0
           Added keywords for `positions`, `velocities` and `forces`.
           Can add and remove position/velocity/force information by using
           the ``has_*`` attribute.
        .. versionchanged:: 2.3.0
           Added the `dtype` attribute hardcoded to :class:`~numpy.float32`.
        """
        # hardcoded
        self._dtype = np.float32

        self.data = {}

        for att in ('dt', 'time_offset'):
            try:
                self.data[att] = kwargs[att]
            except KeyError:
                pass
        try:
            # do I have a hook back to the Reader?
            # can possibly __cinit__ this with PyWeakRefNew
            self._reader = weakref.ref(kwargs['reader'])
        except KeyError:
            pass

        self.has_positions = kwargs.get('positions', True)
        self.has_velocities = kwargs.get('velocities', False)
        self.has_forces = kwargs.get('forces', False)

        # set up aux namespace for adding auxiliary data
        self.aux = Namespace()

    def __dealloc__(self):
        pass

    @property
    def n_atoms(self):
        """A read only view of the number of atoms this Timestep has

        .. versionchanged:: 0.11.0
           Changed to read only property
        """
        # In future could do some magic here to make setting n_atoms
        # resize the coordinate arrays, but
        # - not sure if that is ever useful
        # - not sure how to manage existing data upon extension
        return self._n_atoms

    @property
    def dtype(self):
        """The NumPy dtype of the timestep, all arrays in the timestep will
            have this dtype. Currently hardcoded to :class:`~numpy.float32`.

        .. versionadded:: 2.3.0
           Added dtype
        """
        return self._dtype

    @property
    def has_positions(self):
        """A boolean of whether this Timestep has position data
        This can be changed to ``True`` or ``False`` to allocate space for
        or remove the data.

        .. versionadded:: 0.11.0
        """
        return self._has_positions

    @has_positions.setter
    def has_positions(self, val):
        if val and not self._has_positions:
            if self._positions_alloc:  # already allocated
                # Setting this will always zero fill position data
                # ie
                # True -> False -> True will wipe data from first True state
                cnp.PyArray_FILLWBYTE(self._pos, 0)
                self._has_positions = True
            else:  # first time, we need to allocate to correct shape
                self._pos = cnp.PyArray_ZEROS(
                    2, self._particle_dependent_dim, self._typenum, 0)
                self._has_positions = True
                self._positions_alloc = True
        elif not val:
            # Unsetting val won't delete the numpy array
            self._has_positions = False

    @property
    def has_velocities(self):
        """A boolean of whether this Timestep has velocity data
        This can be changed to ``True`` or ``False`` to allocate space for
        or remove the data.

        .. versionadded:: 0.11.0
        """
        return self._has_velocities

    @has_velocities.setter
    def has_velocities(self, val):
        if val and not self._has_velocities:
            if self._velocities_alloc:  # already allocated
                # Setting this will always zero fill velocity data
                # ie
                # True -> False -> True will wipe data from first True state
                cnp.PyArray_FILLWBYTE(self._velocities, 0)
                self._has_velocities = True
            else:  # first time, we need to allocate to correct shape
                self._velocities = cnp.PyArray_ZEROS(
                    2, self._particle_dependent_dim, self._typenum, 0)
                self._has_velocities = True
                self._velocities_alloc = True
        elif not val:
            # Unsetting val won't delete the numpy array
            self._has_velocities = False

    @property
    def has_forces(self):
        """A boolean of whether this Timestep has force data
        This can be changed to ``True`` or ``False`` to allocate space for
        or remove the data.

        .. versionadded:: 0.11.0
        """
        return self._has_forces

    @has_forces.setter
    def has_forces(self, val):
        if val and not self._has_forces:
            if self._forces_alloc:  # already allocated
                # Setting this will always zero fill force data
                # ie
                # True -> False -> True will wipe data from first True state
                cnp.PyArray_FILLWBYTE(self._forces, 0)
                self._has_forces = True
            else:  # first time, we need to allocate to correct shape
                self._forces = cnp.PyArray_ZEROS(
                    2, self._particle_dependent_dim, self._typenum, 0)
                self._has_forces = True
                self._forces_alloc = True
        elif not val:
            # Unsetting val won't delete the numpy array
            self._has_forces = False

    @property
    def positions(self):
        """A record of the positions of all atoms in this Timestep
        Setting this attribute will add positions to the Timestep if they
        weren't originally present.

        Returns
        -------
        positions : numpy.ndarray with dtype numpy.float32
               position data of shape ``(n_atoms, 3)`` for all atoms

        Raises
        ------
        :exc:`MDAnalysis.exceptions.NoDataError`
               if the Timestep has no position data


        .. versionchanged:: 0.11.0
           Now can raise :exc:`NoDataError` when no position data present
        """
        if self._has_positions:
            return self._pos
        else:
            raise NoDataError("This Timestep has no position information")

    @positions.setter
    def positions(self,  new_positions):
        self.has_positions = True
        if cnp.PyArray_Check(new_positions):  # is it an array?
            cnp.PyArray_CopyInto(self._pos, new_positions)
            # copy into target, handles dtype conversion
        else:
            self._pos[:] = new_positions

    @property
    def _x(self):
        """A view onto the x dimension of position data

        .. versionchanged:: 0.11.0
           Now read only
        """
        return self.positions[:, 0]

    @property
    def _y(self):
        """A view onto the y dimension of position data

        .. versionchanged:: 0.11.0
           Now read only
        """
        return self.positions[:, 1]

    @property
    def _z(self):
        """A view onto the z dimension of position data

        .. versionchanged:: 0.11.0
           Now read only
        """
        return self.positions[:, 2]

    @property
    def dimensions(self):
        """View of unitcell dimensions (*A*, *B*, *C*, *alpha*, *beta*, *gamma*)

        lengths *a*, *b*, *c* are in the MDAnalysis length unit (Å), and
        angles are in degrees.
        """
        if (self._unitcell[:3] == 0).all():
            return None
        else:
            return self._unitcell

    @dimensions.setter
    def dimensions(self,  new_dimensions):
        if new_dimensions is None:
            self._unitcell[:] = 0
        else:
            self._unitcell[:] = new_dimensions

    @property
    def volume(self):
        """volume of the unitcell"""
        if self.dimensions is None:
            return 0
        else:
            return core.box_volume(self.dimensions)

    @property
    def triclinic_dimensions(self):
        """The unitcell dimensions represented as triclinic vectors

        Returns
        -------
        numpy.ndarray
             A (3, 3) numpy.ndarray of unit cell vectors

        Examples
        --------
        The unitcell for a given system can be queried as either three
        vectors lengths followed by their respective angle, or as three
        triclinic vectors.

          >>> ts.dimensions
          array([ 13.,  14.,  15.,  90.,  90.,  90.], dtype=float32)
          >>> ts.triclinic_dimensions
          array([[ 13.,   0.,   0.],
                 [  0.,  14.,   0.],
                 [  0.,   0.,  15.]], dtype=float32)

        Setting the attribute also works::

          >>> ts.triclinic_dimensions = [[15, 0, 0], [5, 15, 0], [5, 5, 15]]
          >>> ts.dimensions
          array([ 15.        ,  15.81138802,  16.58312416,  67.58049774,
                  72.45159912,  71.56504822], dtype=float32)

        See Also
        --------
        :func:`MDAnalysis.lib.mdamath.triclinic_vectors`


        .. versionadded:: 0.11.0
        """
        if self.dimensions is None:
            return None
        else:
            return core.triclinic_vectors(self.dimensions)

    @triclinic_dimensions.setter
    def triclinic_dimensions(self, new_dimensions):
        """Set the unitcell for this Timestep as defined by triclinic vectors
        .. versionadded:: 0.11.0
        """
        if new_dimensions is None:
            self.dimensions = None
        else:
            self.dimensions = core.triclinic_box(*new_dimensions)

    @property
    def velocities(self):
        """A record of the velocities of all atoms in this Timestep
        Setting this attribute will add velocities to the Timestep if they
        weren't originally present.

        Returns
        -------
        velocities : numpy.ndarray with dtype numpy.float32
               velocity data of shape ``(n_atoms, 3)`` for all atoms

        Raises
        ------
        :exc:`MDAnalysis.exceptions.NoDataError`
               if the Timestep has no velocity data


        .. versionadded:: 0.11.0
        """
        if self._has_velocities:
            return self._velocities
        else:
            raise NoDataError("This Timestep has no velocities information")

    @velocities.setter
    def velocities(self,  new_velocities):
        self.has_velocities = True
        if cnp.PyArray_Check(new_velocities):  # is it an array?
            cnp.PyArray_CopyInto(self._velocities, new_velocities)
            # copy into target, handles dtype conversion
        else:
            self._velocities[:] = new_velocities

    @property
    def forces(self):
        """A record of the forces of all atoms in this Timestep
        Setting this attribute will add forces to the Timestep if they
        weren't originally present.

        Returns
        -------

        forces : numpy.ndarray with dtype numpy.float32
               force data of shape ``(n_atoms, 3)`` for all atoms
        Raises
        ------

        :exc:`MDAnalysis.exceptions.NoDataError`
               if the Timestep has no force data
        .. versionadded:: 0.11.0
        """
        if self._has_forces:
            return self._forces
        else:
            raise NoDataError("This Timestep has no force information")

    @forces.setter
    def forces(self,  new_forces):
        self.has_forces = True
        if cnp.PyArray_Check(new_forces):  # is it an array?
            cnp.PyArray_CopyInto(self._forces, new_forces)
            # copy into target, handles dtype conversion
        else:
            self._forces[:] = new_forces

    @classmethod
    def from_timestep(cls, Timestep other, **kwargs):
        """Create a copy of another Timestep, in the format of this Timestep

        .. versionadded:: 0.11.0
        """
        ts = cls(other.n_atoms,
                 positions=other.has_positions,
                 velocities=other.has_velocities,
                 forces=other.has_forces,
                 **kwargs)
        ts.frame = other.frame
        if other.dimensions is not None:
            ts.dimensions = other.dimensions.copy(order=cls.order)
        try:
            ts.positions = other.positions.copy(order=cls.order)
        except NoDataError:
            pass
        try:
            ts.velocities = other.velocities.copy(order=cls.order)
        except NoDataError:
            pass
        try:
            ts.forces = other.forces.copy(order=cls.order)
        except NoDataError:
            pass

        try:
            other._reader = weakref.ref(ts._reader())
        except TypeError:  # TypeError from calling None weakref
            pass

        ts.data = copy.deepcopy(other.data)

        return ts

    @classmethod
    def from_coordinates(cls,
                         positions=None,
                         velocities=None,
                         forces=None,
                         **kwargs):
        """Create an instance of this Timestep, from coordinate data

        Can pass position, velocity and force data to form a Timestep.

        .. versionadded:: 0.11.0
        """
        has_positions = positions is not None
        has_velocities = velocities is not None
        has_forces = forces is not None

        lens = [len(a) for a in [positions, velocities, forces]
                if a is not None]
        if not lens:
            raise ValueError("Must specify at least one set of data")
        n_atoms = max(lens)
        # Check arrays are matched length?
        if not all(val == n_atoms for val in lens):
            raise ValueError("Lengths of input data mismatched")

        ts = cls(n_atoms,
                 positions=has_positions,
                 velocities=has_velocities,
                 forces=has_forces,
                 **kwargs)
        if has_positions:
            ts.positions = positions
        if has_velocities:
            ts.velocities = velocities
        if has_forces:
            ts.forces = forces

        return ts

    def __eq__(self, other):
        """Compare with another Timestep

        .. versionadded:: 0.11.0
        """
        if not isinstance(other, Timestep):
            return NotImplemented

        if not self.frame == other.frame:
            return False

        if not self.n_atoms == other.n_atoms:
            return False

        if not self.has_positions == other.has_positions:
            return False
        if self.has_positions:
            if not (self.positions == other.positions).all():
                return False

        if self.dimensions is None:
            if other.dimensions is not None:
                return False
        else:
            if other.dimensions is None:
                return False
            if not (self.dimensions == other.dimensions).all():
                return False

        if not self.has_velocities == other.has_velocities:
            return False
        if self.has_velocities:
            if not (self.velocities == other.velocities).all():
                return False

        if not self.has_forces == other.has_forces:
            return False
        if self.has_forces:
            if not (self.forces == other.forces).all():
                return False

        return True

    # __ne__ is defers to __eq__ and inverts

    def __getitem__(self, atoms):
        """Get a selection of coordinates

        ``ts[i]``

           return coordinates for the i'th atom (0-based)

        ``ts[start:stop:skip]``

           return an array of coordinates, where start, stop and skip
           correspond to atom indices,
           :attr:`MDAnalysis.core.groups.Atom.index` (0-based)
        """
        if isinstance(atoms, numbers.Integral):
            return self._pos[atoms]
        elif isinstance(atoms, (slice, cnp.ndarray)):
            return self._pos[atoms]
        else:
            raise TypeError

    def __getattr__(self, attr):
        # special-case timestep info
        if attr in ('velocities', 'forces', 'positions'):
            raise NoDataError('This Timestep has no ' + attr)
        err = "{selfcls} object has no attribute '{attr}'"
        raise AttributeError(err.format(selfcls=type(self).__name__,
                                        attr=attr))

    def __len__(self):
        return self.n_atoms

    def __iter__(self):
        """Iterate over coordinates

        ``for x in ts``

        iterate of the coordinates, atom by atom
        """
        for i in range(self.n_atoms):
            yield self[i]

    def __repr__(self):
        desc = "< Timestep {0}".format(self.frame)
        if self.dimensions is not None:
            tail = " with unit cell dimensions {0} >".format(self.dimensions)
        else:
            tail = " >"
        return desc + tail

    def copy(self):
        """Make an independent ("deep") copy of the whole :class:`Timestep`."""
        return self.__deepcopy__()

    def __deepcopy__(self):
        return self.from_timestep(self)

    def __getstate__(self):
        """Make a dictionary of the class state to pickle Timestep instance.

           Must be done manually as Extension types do not have the __dict__
           class attribute and we use a non-trivial `__cinit__`. This means
           that cython cannot automatically  generate an `__reduce__` method
           for us.

        .. versionadded:: 2.3.0
        """
        state = {
            "frame": self.frame,
            "_n_atoms": self._n_atoms,
            "_has_positions": self._has_positions,
            "_has_velocities": self._has_velocities,
            "_has_forces": self._has_forces,

            "_unitcell": self._unitcell,
            "_pos": self._pos,
            "_velocities": self._velocities,
            "_forces": self._forces,

            "_dtype": self._dtype,
            "data": self.data,
            "aux": self.aux,
            "dt": self.dt
        }
        return state

    def __getnewargs_ex__(self):
        """Specify arguments to use in `__cinit__` and `__init__` to use in
           unpickling of timestep instance

        .. versionchanged:: 2.3.0
           removed implementations that use `__dict__` class attribute

        """
        return (self.n_atoms,), {}

    def __setstate__(self, state):
        """Restore class from `state` dictionary in unpickling of Timestep
           instance

        .. versionchanged:: 2.3.0
           removed implementations that use `__dict__` class attribute

        """
        self.frame = state["frame"]
        self._n_atoms = state["_n_atoms"]
        self.has_positions = state["_has_positions"]
        self._has_velocities = state["_has_velocities"]
        self._has_forces = state["_has_forces"]
        self._unitcell = state["_unitcell"]
        self._pos = state["_pos"]
        self._velocities = state["_velocities"]
        self._forces = state["_forces"]
        self._dtype = state["_dtype"]
        self.data = state["data"]
        self.aux = state["aux"]

    def copy_slice(self, sel):
        """Make a new `Timestep` containing a subset of the original `Timestep`.

        Parameters
        ----------
        sel : array_like or slice
            The underlying position, velocity, and force arrays are sliced
            using a :class:`list`, :class:`slice`, or any array-like.

        Returns
        -------
        :class:`Timestep`
            A `Timestep` object of the same type containing all header
            information and all atom information relevant to the selection.

        Note
        ----
        The selection must be a 0 based :class:`slice` or array of the atom indices
        in this :class:`Timestep`

        Example
        -------
        Using a Python :class:`slice` object::

           new_ts = ts.copy_slice(slice(start, stop, step))

        Using a list of indices::

           new_ts = ts.copy_slice([0, 2, 10, 20, 23])


        .. versionadded:: 0.8
        .. versionchanged:: 0.11.0
           Reworked to follow new Timestep API.  Now will strictly only
           copy official attributes of the Timestep.

        """
        # Detect the size of the Timestep by doing a dummy slice
        try:
            pos = self.positions[sel, :]
        except NoDataError:
            # It's cool if there's no Data, we'll live
            pos = None
        except Exception:
            errmsg = ("Selection type must be compatible with slicing the "
                      "coordinates")
            raise TypeError(errmsg) from None
        try:
            vel = self.velocities[sel, :]
        except NoDataError:
            vel = None
        except Exception:
            errmsg = ("Selection type must be compatible with slicing the "
                      "coordinates")
            raise TypeError(errmsg) from None
        try:
            force = self.forces[sel, :]
        except NoDataError:
            force = None
        except Exception:
            errmsg = ("Selection type must be compatible with slicing the "
                      "coordinates")
            raise TypeError(errmsg) from None

        new_TS = self.__class__.from_coordinates(
            positions=pos,
            velocities=vel,
            forces=force)

        new_TS.dimensions = self.dimensions

        new_TS.frame = self.frame

        try:
            new_TS._reader = weakref.ref(self._reader())
        except TypeError:  # TypeError from calling None weakref
            pass
        new_TS.data = copy.deepcopy(self.data)

        return new_TS

    @property
    def dt(self):
        """The time difference in ps between timesteps

        Note
        ----
        This defaults to 1.0 ps in the absence of time data


        .. versionadded:: 0.11.0
        """
        try:
            return self.data['dt']
        except KeyError:
            pass
        try:
            dt = self.data['dt'] = self._reader()._get_dt()
            return dt
        # TypeError from calling None weakref
        # AttributeError from ._get_dt()
        except (TypeError, AttributeError):
            pass

        warnings.warn("Reader has no dt information, set to 1.0 ps")
        return 1.0

    @dt.setter
    def dt(self, new_dt):
        self.data['dt'] = new_dt

    @dt.deleter
    def dt(self):
        del self.data['dt']

    @property
    def time(self):
        """The time in ps of this timestep

        This is calculated as::

          time = ts.data['time_offset'] + ts.time

        Or, if the trajectory doesn't provide time information::

          time = ts.data['time_offset'] + ts.frame * ts.dt

        .. versionadded:: 0.11.0
        """
        offset = self.data.get('time_offset', 0)
        try:
            return self.data['time'] + offset
        except KeyError:
            return self.dt * self.frame + offset

    @time.setter
    def time(self, new_time):
        self.data['time'] = new_time

    @time.deleter
    def time(self):
        del self.data['time']