1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
#
import cython
import numpy as np
from .mdamath import triclinic_vectors
cimport numpy as cnp
cimport MDAnalysis.lib._cutil
from MDAnalysis.lib._cutil cimport _dot, _norm, _cross
from libcpp.vector cimport vector
cnp.import_array()
__all__ = ['augment_coordinates', 'undo_augment']
@cython.boundscheck(False)
@cython.wraparound(False)
def augment_coordinates(float[:, ::1] coordinates, float[:] box, float r):
r"""Calculates the periodic images of particles which are within a distance
`r` from the box walls.
The algorithm works by generating explicit periodic images of atoms residing
close to any of the six box walls. The steps involved in generating images
involves the evaluation of reciprocal box vectors followed by the
calculation of distances of atoms from the walls by means of projection onto
the reciprocal vectors. If the distance is less than a specified cutoff
distance, relevant periodic images are generated using box translation
vectors :math:`\vec{t}` with
.. math:: \vec{t}=l\cdot\vec{a}+m\cdot\vec{b}+n\cdot \vec{c}\,,
where :math:`l,\,m,\,n \in \{-1,\,0,\,1\}` are the neighboring cell indices
in :math:`x`-, :math:`y`-, and :math:`z`-direction relative to the central
cell with box vectors :math:`\vec{a},\,\vec{b},\,\vec{c}`.
For instance, an atom close to the :math:`xy`-plane containing the origin
will generate a periodic image outside the central cell and close to the
opposite :math:`xy`-plane of the box, i.e., shifted by
:math:`\vec{t} = 0\cdot\vec{a}+0\cdot\vec{b}+1\cdot\vec{c}=\vec{c}`.
Likewise, if the particle is close to more than one box walls, images along
the diagonals are also generated::
x x
+------------+ +------------+
| | augment | |
| | -------> | |
| o | x | o |
+------------+ +------------+
Parameters
----------
coordinates : numpy.ndarray
Input coordinate array of shape ``(n, 3)`` and dtype ``numpy.float32``
used to generate duplicate images in the vicinity of the central cell. All
coordinates must be within the primary unit cell.
box : numpy.ndarray
Box dimensions of shape ``(6,)`` and dtype ``numpy.float32``. The
dimensions must be provided in the same format as returned
by :attr:`MDAnalysis.coordinates.base.Timestep.dimensions`:
``[lx, ly, lz, alpha, beta, gamma]``
r : float
Thickness of cutoff region for duplicate image generation.
Returns
-------
output : numpy.ndarray
Coordinates of duplicate (augmented) particles (dtype ``numpy.float32``).
indices : numpy.ndarray
Original indices of the augmented coordinates (dtype ``numpy.int64``).
Maps the indices of augmented particles to their original particle index
such that ``indices[augmented_index] = original_index``.
Note
----
Output does not return coordinates from the initial array.
To merge the particles with their respective images, the following operation
is necessary when generating the images:
.. code-block:: python
images, mapping = augment_coordinates(coordinates, box, max_cutoff)
all_coords = numpy.concatenate([coordinates, images])
See Also
--------
:meth:`undo_augment`
.. versionadded:: 0.19.0
"""
cdef bint lo_x, hi_x, lo_y, hi_y, lo_z, hi_z
cdef int i, j, N
cdef float norm
cdef float shiftX[3]
cdef float shiftY[3]
cdef float shiftZ[3]
cdef float coord[3]
cdef float end[3]
cdef float other[3]
cdef float dm[3][3]
cdef float reciprocal[3][3]
dm = triclinic_vectors(box)
for i in range(3):
shiftX[i] = dm[0][i]
shiftY[i] = dm[1][i]
shiftZ[i] = dm[2][i]
end[i] = dm[0][i] + dm[1][i] + dm[2][i]
# Calculate reciprocal vectors
_cross(&dm[1][0], &dm[2][0], &reciprocal[0][0])
_cross(&dm[2][0], &dm[0][0], &reciprocal[1][0])
_cross(&dm[0][0], &dm[1][0], &reciprocal[2][0])
# Normalize
for i in range(3):
norm = _norm(&reciprocal[i][0])
for j in range(3):
reciprocal[i][j] = reciprocal[i][j]/norm
N = coordinates.shape[0]
cdef vector[float] output
cdef vector[int] indices
for i in range(N):
for j in range(3):
coord[j] = coordinates[i, j]
other[j] = end[j] - coordinates[i, j]
# identify the condition
lo_x = _dot(&coord[0], &reciprocal[0][0]) <= r
hi_x = _dot(&other[0], &reciprocal[0][0]) <= r
lo_y = _dot(&coord[0], &reciprocal[1][0]) <= r
hi_y = _dot(&other[0], &reciprocal[1][0]) <= r
lo_z = _dot(&coord[0], &reciprocal[2][0]) <= r
hi_z = _dot(&other[0], &reciprocal[2][0]) <= r
if lo_x:
# if X, face piece
for j in range(3):
# add to output
output.push_back(coord[j] + shiftX[j])
# keep record of which index this augmented
# position was created from
indices.push_back(i)
if lo_y:
# if X&Y, edge piece
for j in range(3):
output.push_back(coord[j] + shiftX[j] + shiftY[j])
indices.push_back(i)
if lo_z:
# if X&Y&Z, corner piece
for j in range(3):
output.push_back(coord[j] + shiftX[j] + shiftY[j] + shiftZ[j])
indices.push_back(i)
elif hi_z:
for j in range(3):
output.push_back(coord[j] + shiftX[j] + shiftY[j] - shiftZ[j])
indices.push_back(i)
elif hi_y:
for j in range(3):
output.push_back(coord[j] + shiftX[j] - shiftY[j])
indices.push_back(i)
if lo_z:
for j in range(3):
output.push_back(coord[j] + shiftX[j] - shiftY[j] + shiftZ[j])
indices.push_back(i)
elif hi_z:
for j in range(3):
output.push_back(coord[j] + shiftX[j] - shiftY[j] - shiftZ[j])
indices.push_back(i)
if lo_z:
for j in range(3):
output.push_back(coord[j] + shiftX[j] + shiftZ[j])
indices.push_back(i)
elif hi_z:
for j in range(3):
output.push_back(coord[j] + shiftX[j] - shiftZ[j])
indices.push_back(i)
elif hi_x:
for j in range(3):
output.push_back(coord[j] - shiftX[j])
indices.push_back(i)
if lo_y:
for j in range(3):
output.push_back(coord[j] - shiftX[j] + shiftY[j])
indices.push_back(i)
if lo_z:
for j in range(3):
output.push_back(coord[j] - shiftX[j] + shiftY[j] + shiftZ[j])
indices.push_back(i)
elif hi_z:
for j in range(3):
output.push_back(coord[j] - shiftX[j] + shiftY[j] - shiftZ[j])
indices.push_back(i)
elif hi_y:
for j in range(3):
output.push_back(coord[j] - shiftX[j] - shiftY[j])
indices.push_back(i)
if lo_z:
for j in range(3):
output.push_back(coord[j] - shiftX[j] - shiftY[j] + shiftZ[j])
indices.push_back(i)
elif hi_z:
for j in range(3):
output.push_back(coord[j] - shiftX[j] - shiftY[j] - shiftZ[j])
indices.push_back(i)
if lo_z:
for j in range(3):
output.push_back(coord[j] - shiftX[j] + shiftZ[j])
indices.push_back(i)
elif hi_z:
for j in range(3):
output.push_back(coord[j] - shiftX[j] - shiftZ[j])
indices.push_back(i)
if lo_y:
for j in range(3):
output.push_back(coord[j] + shiftY[j])
indices.push_back(i)
if lo_z:
for j in range(3):
output.push_back(coord[j] + shiftY[j] + shiftZ[j])
indices.push_back(i)
elif hi_z:
for j in range(3):
output.push_back(coord[j] + shiftY[j] - shiftZ[j])
indices.push_back(i)
elif hi_y:
for j in range(3):
output.push_back(coord[j] - shiftY[j])
indices.push_back(i)
if lo_z:
for j in range(3):
output.push_back(coord[j] - shiftY[j] + shiftZ[j])
indices.push_back(i)
elif hi_z:
for j in range(3):
output.push_back(coord[j] - shiftY[j] - shiftZ[j])
indices.push_back(i)
if lo_z:
for j in range(3):
output.push_back(coord[j] + shiftZ[j])
indices.push_back(i)
elif hi_z:
for j in range(3):
output.push_back(coord[j] - shiftZ[j])
indices.push_back(i)
n = indices.size()
return np.asarray(output, dtype=np.float32).reshape(n, 3), np.asarray(indices, dtype=np.intp)
@cython.boundscheck(False)
@cython.wraparound(False)
def undo_augment(cnp.intp_t[:] results, cnp.intp_t[:] translation, int nreal):
"""Translate augmented indices back to original indices.
Parameters
----------
results : numpy.ndarray
Array of dtype ``numpy.int64`` containing coordinate indices, including
"augmented" indices.
translation : numpy.ndarray
Index map of dtype ``numpy.int64`` linking the augmented indices to the
original particle indices such that
``translation[augmented_index] = original_index``.
nreal : int
Number of real coordinates, i.e., indices in `results` equal or larger
than this need to be mapped to their real counterpart.
Returns
-------
results : numpy.ndarray
Modified input `results` with all the augmented indices translated to
their corresponding initial original indices.
Note
----
Modifies the results array in place.
See Also
--------
:meth:`augment_coordinates`
.. versionadded:: 0.19.0
"""
cdef int N
cdef ssize_t i
N = results.shape[0]
for i in range(N):
if results[i] >= nreal:
results[i] = translation[results[i] - nreal]
return np.asarray(results, dtype=np.intp)
|