File: c_distances.pyx

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (414 lines) | stat: -rw-r--r-- 14,470 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
#

"""
Distance calculation library --- :mod:`MDAnalysis.lib.c_distances`
==================================================================

Serial versions of all distance calculations
"""

cimport cython
from libc.stdint cimport uint64_t, UINT64_MAX
import numpy
cimport numpy
numpy.import_array()

from libc.math cimport round as cround
from libc.float cimport FLT_MAX, DBL_MAX

# make UINT64_MAX visible at the python layer
_UINT64_MAX = UINT64_MAX


OPENMP_ENABLED = True if USED_OPENMP else False


def calc_distance_array(numpy.ndarray ref, numpy.ndarray conf,
                        numpy.ndarray result):
    cdef uint64_t confnum, refnum
    confnum = conf.shape[0]
    refnum = ref.shape[0]

    _calc_distance_array(<coordinate*> ref.data, refnum,
                         <coordinate*> conf.data, confnum,
                         <double*> result.data)


def calc_distance_array_ortho(numpy.ndarray ref, numpy.ndarray conf,
                              numpy.ndarray box, numpy.ndarray result):
    cdef uint64_t confnum, refnum
    confnum = conf.shape[0]
    refnum = ref.shape[0]

    _calc_distance_array_ortho(<coordinate*> ref.data, refnum,
                               <coordinate*> conf.data, confnum,
                               <float*> box.data, <double*> result.data)


def calc_distance_array_triclinic(numpy.ndarray ref, numpy.ndarray conf,
                                  numpy.ndarray box, numpy.ndarray result):
    cdef uint64_t confnum, refnum
    confnum = conf.shape[0]
    refnum = ref.shape[0]

    _calc_distance_array_triclinic(<coordinate*> ref.data, refnum,
                                   <coordinate*> conf.data, confnum,
                                   <float*> box.data, <double*> result.data)


def calc_self_distance_array(numpy.ndarray ref, numpy.ndarray result):
    cdef uint64_t refnum
    refnum = ref.shape[0]

    _calc_self_distance_array(<coordinate*> ref.data, refnum,
                              <double*> result.data)


def calc_self_distance_array_ortho(numpy.ndarray ref, numpy.ndarray box,
                                   numpy.ndarray result):
    cdef uint64_t refnum
    refnum = ref.shape[0]

    _calc_self_distance_array_ortho(<coordinate*> ref.data, refnum,
                                    <float*> box.data, <double*> result.data)


def calc_self_distance_array_triclinic(numpy.ndarray ref, numpy.ndarray box,
                                       numpy.ndarray result):
    cdef uint64_t refnum
    refnum = ref.shape[0]

    _calc_self_distance_array_triclinic(<coordinate*> ref.data, refnum,
                                        <float*> box.data,
                                        <double*> result.data)


def coord_transform(numpy.ndarray coords, numpy.ndarray box):
    cdef uint64_t numcoords
    numcoords = coords.shape[0]

    _coord_transform(<coordinate*> coords.data, numcoords, <double*> box.data)


def calc_bond_distance(numpy.ndarray coords1, numpy.ndarray coords2,
                       numpy.ndarray results):
    cdef uint64_t numcoords
    numcoords = coords1.shape[0]

    _calc_bond_distance(<coordinate*> coords1.data, <coordinate*> coords2.data,
                        numcoords, <double*> results.data)


def calc_bond_distance_ortho(numpy.ndarray coords1, numpy.ndarray coords2,
                             numpy.ndarray box, numpy.ndarray results):
    cdef uint64_t numcoords
    numcoords = coords1.shape[0]

    _calc_bond_distance_ortho(<coordinate*> coords1.data,
                              <coordinate*> coords2.data, numcoords,
                              <float*> box.data, <double*> results.data)


def calc_bond_distance_triclinic(numpy.ndarray coords1, numpy.ndarray coords2,
                                 numpy.ndarray box, numpy.ndarray results):
    cdef uint64_t numcoords
    numcoords = coords1.shape[0]

    _calc_bond_distance_triclinic(<coordinate*> coords1.data,
                                  <coordinate*> coords2.data, numcoords,
                                  <float*> box.data, <double*> results.data)


def calc_angle(numpy.ndarray coords1, numpy.ndarray coords2,
               numpy.ndarray coords3, numpy.ndarray results):
    cdef uint64_t numcoords
    numcoords = coords1.shape[0]

    _calc_angle(<coordinate*> coords1.data, <coordinate*> coords2.data,
                <coordinate*> coords3.data, numcoords, <double*> results.data)


def calc_angle_ortho(numpy.ndarray coords1, numpy.ndarray coords2,
                     numpy.ndarray coords3, numpy.ndarray box,
                     numpy.ndarray results):
    cdef uint64_t numcoords
    numcoords = coords1.shape[0]

    _calc_angle_ortho(<coordinate*> coords1.data, <coordinate*> coords2.data,
                      <coordinate*> coords3.data, numcoords, <float*> box.data,
                      <double*> results.data)


def calc_angle_triclinic(numpy.ndarray coords1, numpy.ndarray coords2,
                         numpy.ndarray coords3, numpy.ndarray box,
                         numpy.ndarray results):
    cdef uint64_t numcoords
    numcoords = coords1.shape[0]

    _calc_angle_triclinic(<coordinate*> coords1.data,
                          <coordinate*> coords2.data,
                          <coordinate*> coords3.data, numcoords,
                          <float*> box.data, <double*> results.data)


def calc_dihedral(numpy.ndarray coords1, numpy.ndarray coords2,
                  numpy.ndarray coords3, numpy.ndarray coords4,
                  numpy.ndarray results):
    cdef uint64_t numcoords
    numcoords = coords1.shape[0]

    _calc_dihedral(<coordinate*> coords1.data, <coordinate*> coords2.data,
                   <coordinate*> coords3.data, <coordinate*> coords4.data,
                   numcoords, <double*> results.data)


def calc_dihedral_ortho(numpy.ndarray coords1, numpy.ndarray coords2,
                        numpy.ndarray coords3, numpy.ndarray coords4,
                        numpy.ndarray box, numpy.ndarray results):
    cdef uint64_t numcoords
    numcoords = coords1.shape[0]

    _calc_dihedral_ortho(<coordinate*> coords1.data, <coordinate*> coords2.data,
                         <coordinate*> coords3.data, <coordinate*> coords4.data,
                         numcoords, <float*> box.data, <double*> results.data)


def calc_dihedral_triclinic(numpy.ndarray coords1, numpy.ndarray coords2,
                            numpy.ndarray coords3, numpy.ndarray coords4,
                            numpy.ndarray box, numpy.ndarray results):
    cdef uint64_t numcoords
    numcoords = coords1.shape[0]

    _calc_dihedral_triclinic(<coordinate*> coords1.data,
                             <coordinate*> coords2.data,
                             <coordinate*> coords3.data,
                             <coordinate*> coords4.data, numcoords,
                             <float*> box.data, <double*> results.data)


def ortho_pbc(numpy.ndarray coords, numpy.ndarray box):
    cdef uint64_t numcoords
    numcoords = coords.shape[0]

    _ortho_pbc(<coordinate*> coords.data, numcoords, <float*> box.data)


def triclinic_pbc(numpy.ndarray coords, numpy.ndarray box):
    cdef uint64_t numcoords
    numcoords = coords.shape[0]

    _triclinic_pbc(<coordinate*> coords.data, numcoords, <float*> box.data)


@cython.boundscheck(False)
def contact_matrix_no_pbc(coord, sparse_contacts, cutoff):
    cdef int rows = len(coord)
    cdef double cutoff2 = cutoff ** 2
    cdef float[:, ::1] coord_view = coord

    cdef int i, j
    cdef double[3] rr
    cdef double dist
    for i in range(rows):
        sparse_contacts[i, i] = True
        for j in range(i+1, rows):
            rr[0] = coord_view[i, 0] - coord_view[j, 0]
            rr[1] = coord_view[i, 1] - coord_view[j, 1]
            rr[2] = coord_view[i, 2] - coord_view[j, 2]
            dist = rr[0]*rr[0] + rr[1]*rr[1] + rr[2]*rr[2]
            if dist < cutoff2:
                sparse_contacts[i, j] = True
                sparse_contacts[j, i] = True


@cython.boundscheck(False)
def contact_matrix_pbc(coord, sparse_contacts, box, cutoff):
    cdef int rows = len(coord)
    cdef double cutoff2 = cutoff ** 2
    cdef float[:, ::1] coord_view = coord
    cdef float[::1] box_view = box
    cdef float[::1] box_inv = 1. / box

    cdef int i, j
    cdef double[3] rr
    cdef double dist
    for i in range(rows):
        sparse_contacts[i, i] = True
        for j in range(i+1, rows):
            rr[0] = coord_view[i, 0] - coord_view[j, 0]
            rr[1] = coord_view[i, 1] - coord_view[j, 1]
            rr[2] = coord_view[i, 2] - coord_view[j, 2]

            minimum_image(rr, &box_view[0], &box_inv[0])

            dist = rr[0]*rr[0] + rr[1]*rr[1] + rr[2]*rr[2]

            if dist < cutoff2:
                sparse_contacts[i, j] = True
                sparse_contacts[j, i] = True


@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void _minimum_image_orthogonal(cython.floating[:] dx,
                                           cython.floating[:] box,
                                           cython.floating[:] inverse_box) nogil:
    """Minimize dx to be the shortest vector

    Parameters
    ----------
    dx : numpy.array, shape (3,)
      vector to minimize
    box : numpy.array, shape (3,)
      box length in each dimension
    inverse_box : numpy.array, shape (3,)
      inverse of box

    Operates in-place on dx!
    """
    cdef int i
    cdef cython.floating s

    for i in range(3):
        if box[i] > 0:
            s = inverse_box[i] * dx[i]
            dx[i] = box[i] * (s - cround(s))


@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void _minimum_image_triclinic(cython.floating[:] dx,
                                          cython.floating[:] box,
                                          cython.floating[:] inverse_box) nogil:
    """Minimise dx to be the shortest vector

    Parameters
    ----------
    dx : numpy.array, shape (3,)
      the vector to apply minimum image convention to
    box : numpy.array, shape (9,)
      flattened 3x3 representation of the unit cell
    inverse_box : numpy.array, shape (3,)
      inverse of the **diagonal** of the 3x3 representation

    This version is near identical to the version in calc_distances.h, with the
    difference being that this version does not assume that coordinates are at
    most a single box length apart.

    Operates in-place on dx!
    """
    cdef cython.floating dx_min[3]
    cdef cython.floating s, dsq, dsq_min, rx
    cdef cython.floating ry[2]
    cdef cython.floating rz[3]
    cdef int ix, iy, iz

    # first make shift only 1 cell in any direction
    s = cround(inverse_box[2] * dx[2])
    dx[0] -= s * box[6]
    dx[1] -= s * box[7]
    dx[2] -= s * box[8]
    s = cround(inverse_box[1] * dx[1])
    dx[0] -= s * box[3]
    dx[1] -= s * box[4]
    s = cround(inverse_box[0] * dx[0])
    dx[0] -= s * box[0]

    if cython.floating is float:
        dsq_min = FLT_MAX
    else:
        dsq_min = DBL_MAX
    dx_min[0] = 0.0
    dx_min[1] = 0.0
    dx_min[2] = 0.0

    # then check all images to see which combination of 1 cell shifts gives the best shift
    for ix in range(-1, 2):
        rx = dx[0] + box[0] * ix
        for iy in range(-1, 2):
            ry[0] = rx + box[3] * iy
            ry[1] = dx[1] + box[4] * iy
            for iz in range(-1, 2):
                rz[0] = ry[0] + box[6] * iz
                rz[1] = ry[1] + box[7] * iz
                rz[2] = dx[2] + box[8] * iz
                dsq = rz[0] * rz[0] + rz[1] * rz[1] + rz[2] * rz[2]
                if (dsq < dsq_min):
                    dsq_min = dsq
                    dx_min[0] = rz[0]
                    dx_min[1] = rz[1]
                    dx_min[2] = rz[2]

    dx[0] = dx_min[0]
    dx[1] = dx_min[1]
    dx[2] = dx_min[2]


@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def _minimize_vectors_ortho(cython.floating[:, :] vectors not None, cython.floating[:] box not None,
                            cython.floating[:, :] output not None):
    cdef int i, n
    cdef cython.floating box_inverse[3]
    cdef cython.floating[:] box_inverse_view

    box_inverse[0] = 1.0 / box[0]
    box_inverse[1] = 1.0 / box[1]
    box_inverse[2] = 1.0 / box[2]

    box_inverse_view = box_inverse

    n = len(vectors)
    with nogil:
        for i in range(n):
            output[i, 0] = vectors[i, 0]
            output[i, 1] = vectors[i, 1]
            output[i, 2] = vectors[i, 2]
            _minimum_image_orthogonal(output[i, :], box, box_inverse_view)


@cython.boundscheck(False)
@cython.wraparound(False)
def _minimize_vectors_triclinic(cython.floating[:, :] vectors not None, cython.floating[:] box not None,
                                cython.floating[:, :] output not None):
    cdef int i, n
    cdef cython.floating box_inverse[3]
    cdef cython.floating[:] box_inverse_view

    # this is only inverse of diagonal, used for initial shift to ensure vector is within a single shift away
    box_inverse[0] = 1.0 / box[0]
    box_inverse[1] = 1.0 / box[4]
    box_inverse[2] = 1.0 / box[8]

    box_inverse_view = box_inverse

    n = len(vectors)
    with nogil:
        for i in range(n):
            output[i, 0] = vectors[i, 0]
            output[i, 1] = vectors[i, 1]
            output[i, 2] = vectors[i, 2]
            _minimum_image_triclinic(output[i, :], box, box_inverse_view)