1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
Mathematical helper functions --- :mod:`MDAnalysis.lib.mdamath`
===============================================================
Helper functions for common mathematical operations. Some of these functions
are written in C/cython for higher performance.
Linear algebra
--------------
.. autofunction:: normal
.. autofunction:: norm
.. autofunction:: pdot
.. autofunction:: pnorm
.. autofunction:: angle
.. autofunction:: dihedral
.. autofunction:: stp
.. autofunction:: sarrus_det
.. autofunction:: triclinic_box
.. autofunction:: triclinic_vectors
.. autofunction:: box_volume
Connectivity
------------
.. autofunction:: make_whole
.. autofunction:: find_fragments
.. versionadded:: 0.11.0
.. versionchanged: 1.0.0
Unused function :func:`_angle()` has now been removed.
"""
import numpy as np
from ..exceptions import NoDataError
from . import util
from ._cutil import (
make_whole,
find_fragments,
_sarrus_det_single,
_sarrus_det_multiple,
)
import numpy.typing as npt
from typing import Union
# geometric functions
def norm(v: npt.ArrayLike) -> float:
r"""Calculate the norm of a vector v.
.. math:: v = \sqrt{\mathbf{v}\cdot\mathbf{v}}
This version is faster then numpy.linalg.norm because it only works for a
single vector and therefore can skip a lot of the additional fuss
linalg.norm does.
Parameters
----------
v : array_like
1D array of shape (N) for a vector of length N
Returns
-------
float
norm of the vector
"""
return np.sqrt(np.dot(v, v))
def normal(vec1: npt.ArrayLike, vec2: npt.ArrayLike) -> npt.NDArray:
r"""Returns the unit vector normal to two vectors.
.. math::
\hat{\mathbf{n}} = \frac{\mathbf{v}_1 \times \mathbf{v}_2}{|\mathbf{v}_1 \times \mathbf{v}_2|}
If the two vectors are collinear, the vector :math:`\mathbf{0}` is returned.
.. versionchanged:: 0.11.0
Moved into lib.mdamath
"""
# TODO: enable typing when https://github.com/python/mypy/issues/11347 done
normal: npt.NDArray = np.cross(vec1, vec2) # type: ignore
n = norm(normal)
if n == 0.0:
return normal # returns [0,0,0] instead of [nan,nan,nan]
# ... could also use numpy.nan_to_num(normal/norm(normal))
return normal / n
def pdot(a: npt.NDArray, b: npt.NDArray) -> npt.NDArray:
"""Pairwise dot product.
``a`` must be the same shape as ``b``.
Parameters
----------
a: :class:`numpy.ndarray` of shape (N, M)
b: :class:`numpy.ndarray` of shape (N, M)
Returns
-------
:class:`numpy.ndarray` of shape (N,)
"""
return np.einsum("ij,ij->i", a, b)
def pnorm(a: npt.NDArray) -> npt.NDArray:
"""Euclidean norm of each vector in a matrix
Parameters
----------
a: :class:`numpy.ndarray` of shape (N, M)
Returns
-------
:class:`numpy.ndarray` of shape (N,)
"""
return pdot(a, a) ** 0.5
def angle(a: npt.ArrayLike, b: npt.ArrayLike) -> float:
"""Returns the angle between two vectors in radians
.. versionchanged:: 0.11.0
Moved into lib.mdamath
.. versionchanged:: 1.0.0
Changed rounding-off code to use `np.clip()`. Values lower than
-1.0 now return `np.pi` instead of `-np.pi`
"""
x = np.dot(a, b) / (norm(a) * norm(b))
# catch roundoffs that lead to nan otherwise
x = np.clip(x, -1.0, 1.0)
return np.arccos(x)
def stp(
vec1: npt.ArrayLike, vec2: npt.ArrayLike, vec3: npt.ArrayLike
) -> float:
r"""Takes the scalar triple product of three vectors.
Returns the volume *V* of the parallel epiped spanned by the three
vectors
.. math::
V = \mathbf{v}_3 \cdot (\mathbf{v}_1 \times \mathbf{v}_2)
.. versionchanged:: 0.11.0
Moved into lib.mdamath
"""
# TODO: enable typing when https://github.com/python/mypy/issues/11347 done
return np.dot(vec3, np.cross(vec1, vec2)) # type: ignore
def dihedral(ab: npt.ArrayLike, bc: npt.ArrayLike, cd: npt.ArrayLike) -> float:
r"""Returns the dihedral angle in radians between vectors connecting A,B,C,D.
The dihedral measures the rotation around bc::
ab
A---->B
\ bc
_\'
C---->D
cd
The dihedral angle is restricted to the range -π <= x <= π.
.. versionadded:: 0.8
.. versionchanged:: 0.11.0
Moved into lib.mdamath
"""
x = angle(normal(ab, bc), normal(bc, cd))
return x if stp(ab, bc, cd) <= 0.0 else -x
def sarrus_det(matrix: npt.NDArray) -> Union[float, npt.NDArray]:
"""Computes the determinant of a 3x3 matrix according to the
`rule of Sarrus`_.
If an array of 3x3 matrices is supplied, determinants are computed per
matrix and returned as an appropriately shaped numpy array.
.. _rule of Sarrus:
https://en.wikipedia.org/wiki/Rule_of_Sarrus
Parameters
----------
matrix : numpy.ndarray
An array of shape ``(..., 3, 3)`` with the 3x3 matrices residing in the
last two dimensions.
Returns
-------
det : float or numpy.ndarray
The determinant(s) of `matrix`.
If ``matrix.shape == (3, 3)``, the determinant will be returned as a
scalar. If ``matrix.shape == (..., 3, 3)``, the determinants will be
returned as a :class:`numpy.ndarray` of shape ``(...,)`` and dtype
``numpy.float64``.
Raises
------
ValueError:
If `matrix` has less than two dimensions or its last two dimensions
are not of shape ``(3, 3)``.
.. versionadded:: 0.20.0
"""
m = matrix.astype(np.float64)
shape = m.shape
ndim = m.ndim
if ndim < 2 or shape[-2:] != (3, 3):
raise ValueError(
"Invalid matrix shape: must be (3, 3) or (..., 3, 3), "
"got {}.".format(shape)
)
if ndim == 2:
return _sarrus_det_single(m)
return _sarrus_det_multiple(m.reshape((-1, 3, 3))).reshape(shape[:-2])
def triclinic_box(
x: npt.ArrayLike, y: npt.ArrayLike, z: npt.ArrayLike
) -> npt.NDArray:
"""Convert the three triclinic box vectors to
``[lx, ly, lz, alpha, beta, gamma]``.
If the resulting box is invalid, i.e., any box length is zero or negative,
or any angle is outside the open interval ``(0, 180)``, a zero vector will
be returned.
All angles are in degrees and defined as follows:
* ``alpha = angle(y,z)``
* ``beta = angle(x,z)``
* ``gamma = angle(x,y)``
Parameters
----------
x : array_like
Array of shape ``(3,)`` representing the first box vector
y : array_like
Array of shape ``(3,)`` representing the second box vector
z : array_like
Array of shape ``(3,)`` representing the third box vector
Returns
-------
numpy.ndarray
A numpy array of shape ``(6,)`` and dtype ``np.float32`` providing the
unitcell dimensions in the same format as returned by
:attr:`MDAnalysis.coordinates.timestep.Timestep.dimensions`:\n
``[lx, ly, lz, alpha, beta, gamma]``.\n
Invalid boxes are returned as a zero vector.
Note
----
Definition of angles: http://en.wikipedia.org/wiki/Lattice_constant
See Also
--------
:func:`~MDAnalysis.lib.mdamath.triclinic_vectors`
.. versionchanged:: 0.20.0
Calculations are performed in double precision and invalid box vectors
result in an all-zero box.
"""
x = np.asarray(x, dtype=np.float64)
y = np.asarray(y, dtype=np.float64)
z = np.asarray(z, dtype=np.float64)
lx = norm(x)
ly = norm(y)
lz = norm(z)
with np.errstate(invalid="ignore"):
alpha = np.rad2deg(np.arccos(np.dot(y, z) / (ly * lz)))
beta = np.rad2deg(np.arccos(np.dot(x, z) / (lx * lz)))
gamma = np.rad2deg(np.arccos(np.dot(x, y) / (lx * ly)))
box = np.array([lx, ly, lz, alpha, beta, gamma], dtype=np.float32)
# Only positive edge lengths and angles in (0, 180) are allowed:
if np.all(box > 0.0) and alpha < 180.0 and beta < 180.0 and gamma < 180.0:
return box
# invalid box, return zero vector:
return np.zeros(6, dtype=np.float32)
def triclinic_vectors(
dimensions: npt.ArrayLike, dtype: npt.DTypeLike = np.float32
) -> npt.NDArray:
"""Convert ``[lx, ly, lz, alpha, beta, gamma]`` to a triclinic matrix
representation.
Original `code by Tsjerk Wassenaar`_ posted on the Gromacs mailinglist.
If `dimensions` indicates a non-periodic system (i.e., all lengths are
zero), zero vectors are returned. The same applies for invalid `dimensions`,
i.e., any box length is zero or negative, or any angle is outside the open
interval ``(0, 180)``.
.. _code by Tsjerk Wassenaar:
http://www.mail-archive.com/gmx-users@gromacs.org/msg28032.html
Parameters
----------
dimensions : array_like
Unitcell dimensions provided in the same format as returned by
:attr:`MDAnalysis.coordinates.timestep.Timestep.dimensions`:\n
``[lx, ly, lz, alpha, beta, gamma]``.
dtype: numpy.dtype
The data type of the returned box matrix.
Returns
-------
box_matrix : numpy.ndarray
A numpy array of shape ``(3, 3)`` and dtype `dtype`,
with ``box_matrix[0]`` containing the first, ``box_matrix[1]`` the
second, and ``box_matrix[2]`` the third box vector.
Notes
-----
* The first vector is guaranteed to point along the x-axis, i.e., it has the
form ``(lx, 0, 0)``.
* The second vector is guaranteed to lie in the x/y-plane, i.e., its
z-component is guaranteed to be zero.
* If any box length is negative or zero, or if any box angle is zero, the
box is treated as invalid and an all-zero-matrix is returned.
.. versionchanged:: 0.7.6
Null-vectors are returned for non-periodic (or missing) unit cell.
.. versionchanged:: 0.20.0
* Calculations are performed in double precision and zero vectors are
also returned for invalid boxes.
* Added optional output dtype parameter.
"""
dim = np.asarray(dimensions, dtype=np.float64)
lx, ly, lz, alpha, beta, gamma = dim
# Only positive edge lengths and angles in (0, 180) are allowed:
if not (
np.all(dim > 0.0) and alpha < 180.0 and beta < 180.0 and gamma < 180.0
):
# invalid box, return zero vectors:
box_matrix = np.zeros((3, 3), dtype=dtype)
# detect orthogonal boxes:
elif alpha == beta == gamma == 90.0:
# box is orthogonal, return a diagonal matrix:
box_matrix = np.diag(dim[:3].astype(dtype, copy=False))
# we have a triclinic box:
else:
box_matrix = np.zeros((3, 3), dtype=np.float64)
box_matrix[0, 0] = lx
# Use exact trigonometric values for right angles:
if alpha == 90.0:
cos_alpha = 0.0
else:
cos_alpha = np.cos(np.deg2rad(alpha))
if beta == 90.0:
cos_beta = 0.0
else:
cos_beta = np.cos(np.deg2rad(beta))
if gamma == 90.0:
cos_gamma = 0.0
sin_gamma = 1.0
else:
gamma = np.deg2rad(gamma)
cos_gamma = np.cos(gamma)
sin_gamma = np.sin(gamma)
box_matrix[1, 0] = ly * cos_gamma
box_matrix[1, 1] = ly * sin_gamma
box_matrix[2, 0] = lz * cos_beta
box_matrix[2, 1] = lz * (cos_alpha - cos_beta * cos_gamma) / sin_gamma
box_matrix[2, 2] = np.sqrt(
lz * lz - box_matrix[2, 0] ** 2 - box_matrix[2, 1] ** 2
)
# The discriminant of the above square root is only negative or zero for
# triplets of box angles that lead to an invalid box (i.e., the sum of
# any two angles is less than or equal to the third).
# We don't need to explicitly test for np.nan here since checking for a
# positive value already covers that.
if box_matrix[2, 2] > 0.0:
# all good, convert to correct dtype:
box_matrix = box_matrix.astype(dtype, copy=False)
else:
# invalid box, return zero vectors:
box_matrix = np.zeros((3, 3), dtype=dtype)
return box_matrix
def box_volume(dimensions: npt.ArrayLike) -> float:
"""Return the volume of the unitcell described by `dimensions`.
The volume is computed as the product of the box matrix trace, with the
matrix obtained from :func:`triclinic_vectors`.
If the box is invalid, i.e., any box length is zero or negative, or any
angle is outside the open interval ``(0, 180)``, the resulting volume will
be zero.
Parameters
----------
dimensions : array_like
Unitcell dimensions provided in the same format as returned by
:attr:`MDAnalysis.coordinates.timestep.Timestep.dimensions`:\n
``[lx, ly, lz, alpha, beta, gamma]``.
Returns
-------
volume : float
The volume of the unitcell. Will be zero for invalid boxes.
.. versionchanged:: 0.20.0
Calculations are performed in double precision and zero is returned
for invalid dimensions.
"""
dim = np.asarray(dimensions, dtype=np.float64)
lx, ly, lz, alpha, beta, gamma = dim
if alpha == beta == gamma == 90.0 and lx > 0 and ly > 0 and lz > 0:
# valid orthogonal box, volume is the product of edge lengths:
volume = lx * ly * lz
else:
# triclinic or invalid box, volume is trace product of box matrix
# (invalid boxes are set to all zeros by triclinic_vectors):
tri_vecs = triclinic_vectors(dim, dtype=np.float64)
volume = tri_vecs[0, 0] * tri_vecs[1, 1] * tri_vecs[2, 2]
return volume
|