1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
#
# Copyright (C) 2013-2018 Sébastien Buchoux <sebastien.buchoux@gmail.com>
# Copyright (c) 2018 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v3 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
# cython: initializedcheck=False
# cython: embedsignature=True
"""
Neighbor search library --- :mod:`MDAnalysis.lib.nsgrid`
========================================================
About the code
--------------
This Neighbor search library is a serialized Cython version greatly
inspired by the NS grid search implemented in
`GROMACS <http://www.gromacs.org/>`_ .
GROMACS 4.x code (more precisely
`nsgrid.c <https://github.com/gromacs/gromacs/commits/master/src/mdlib/nsgrid.c>`_
and `ns.c <https://github.com/gromacs/gromacs/commits/master/src/mdlib/ns.c>`_ )
was used as reference to write this file.
GROMACS 4.x code is released under the GNU Public Licence v2.
About the algorithm
-------------------
The neighbor search implemented here is based on
`cell lists <https://en.wikipedia.org/wiki/Cell_lists>`_ which allow
computation of pairs [#]_ with a cost of :math:`O(N)`, instead
of :math:`O(N^2)`. The basic algorithm is described in
Appendix F, Page 552 of
``Understanding Molecular Dynamics: From Algorithm to Applications`` by Frenkel and Smit.
In brief, the algorithm divides the domain into smaller subdomains called `cells`
and distributes every particle to these cells based on their positions. Subsequently,
any distance based query first identifies the corresponding cell position in the
domain followed by distance evaluations within the identified cell and
neighboring cells only. Care must be taken to ensure that `cellsize` is
greater than the desired search distance, otherwise all of the neighbours might
not reflect in the results.
.. [#] a pair correspond to two particles that are considered as neighbors .
.. versionadded:: 0.19.0
.. versionchanged:: 1.0.2
Rewrote module
.. versionchanged:: 2.1.0
Capped max grid dimension to 1290, which when cubed is the max value of
a 32 bit signed integer.
Classes
-------
"""
import numpy as np
from libcpp.vector cimport vector
from libc cimport math
cdef int END = -1
cdef int XX = 0
cdef int XY = 3
cdef int YY = 4
cdef int XZ = 6
cdef int YZ = 7
cdef int ZZ = 8
# Cube root of the maximum size of a 32 bit signed integer. If the system is divided into more
# grids than this, integer overflow will occur.
cdef int MAX_GRID_DIM = 1290
ctypedef float coordinate[3]
cdef extern from "calc_distances.h" nogil:
void _minimum_image_ortho_lazy(double* x, float* box, float* half_box)
void minimum_image_triclinic(double* dx, float* box)
void _ortho_pbc(coordinate* coords, int numcoords, float* box)
void _triclinic_pbc(coordinate* coords, int numcoords, float* box)
cdef inline float fmax(float a, float b):
if a > b:
return a
else:
return b
cdef inline float fmin(float a, float b):
if a < b:
return a
else:
return b
cdef inline float degsin(float deg):
# sin in degrees
deg *= math.M_PI / 180.
return math.sin(deg)
cdef class NSResults(object):
"""Class to store the results
All outputs from :class:`FastNS` are stored in an instance of this class.
All methods of :class:`FastNS` return an instance of this class, which can
be used to generate the desired results on demand.
"""
cdef vector[int] pairs
cdef vector[double] distances2
cdef void add_neighbors(self, int beadid_i, int beadid_j, double distance2) nogil:
"""Internal function to add pairs and distances to buffers
The buffers populated using this method are used by
other methods of this class. This is the
primary function used by :class:`FastNS` to save all
the pair of atoms,
which are considered as neighbors.
"""
self.pairs.push_back(beadid_i)
self.pairs.push_back(beadid_j)
self.distances2.push_back(distance2)
def get_pairs(self):
"""Returns all the pairs within the desired cutoff distance
Returns an array of shape ``(N, 2)``, where N is the number of pairs
between ``reference`` and ``configuration`` within the specified distance.
For every pair ``(i, j)``, ``reference[i]`` and ``configuration[j]`` are
atom positions such that ``reference`` is the position of query
atoms while ``configuration`` coontains the position of group of
atoms used to search against the query atoms.
Returns
-------
pairs : numpy.ndarray
pairs of atom indices of neighbors from query
and initial atom coordinates of shape ``(N, 2)``
"""
return np.asarray(self.pairs, dtype=np.intp).reshape(-1, 2)
def get_pair_distances(self):
"""Returns all the distances corresponding to each pair of neighbors
Returns an array of shape ``N`` where N is the number of pairs
among the query atoms and initial atoms within a specified distance.
Every element ``[i]`` corresponds to the distance between
``pairs[i, 0]`` and ``pairs[i, 1]``, where pairs is the array
obtained from ``get_pairs()``
Returns
-------
distances : numpy.ndarray
distances between pairs of query and initial
atom coordinates of shape ``N``
See Also
--------
:meth:`~NSResults.get_pairs`
"""
dist2 = np.asarray(self.distances2)
return np.sqrt(dist2)
cdef class FastNS(object):
"""Grid based search between positions
Minimum image convention is used for distance evaluations
if pbc is set to ``True``.
.. versionchanged:: 1.0.2
Rewrote to fix bugs with triclinic boxes
"""
cdef readonly double cutoff
cdef float[:, ::1] coords_bbox
cdef int[3] ncells # individual cells in every dimension
cdef int[3] cell_offsets # Cell Multipliers
# cellsize MUST be double precision, otherwise coord2cellid() may fail for
# coordinates very close to the upper box boundaries! See Issue #2132
# diagonal stores the cell width, off diagonal elements are the "tilt"
# i.e. cellsize[3] is the dxdy tilt (box[XY] / box[YY])
cdef double[9] cellsize
cdef int[::1] head_id # first coord id for a given cell
cdef int[::1] next_id # next coord id after a given cell
cdef bint triclinic
cdef float[6] dimensions
cdef float[3] half_dimensions
cdef float[3] inverse_dimensions
cdef float[9] triclinic_dimensions
# are we periodic in the X, Y and Z dimension?
cdef bint pbc # periodic at all?
cdef bint periodic[3]
def __init__(self, cutoff, coords, box, pbc=True):
"""
If box is not supplied, the range of coordinates i.e.
``[xmax, ymax, zmax] - [xmin, ymin, zmin]`` should be used
to construct a pseudo box. Subsequently, the origin should also be
shifted to ``[xmin, ymin, zmin]``. These arguments must be provided
to the function.
Parameters
----------
cutoff : float
Desired cutoff distance
coords : numpy.ndarray
atom coordinates of shape ``(N, 3)`` for ``N`` atoms.
``dtype=numpy.float32``. For Non-PBC calculations,
all the coords must be within the bounding box specified
by ``box``
box : numpy.ndarray
Box dimension of shape (6, ). The dimensions must be
provided in the same format as returned
by :attr:`MDAnalysis.coordinates.base.Timestep.dimensions`:
``[lx, ly, lz, alpha, beta, gamma]``. For non-PBC
evaluations, provide an orthogonal bounding box
(dtype = numpy.float32)
pbc : boolean
Handle to switch periodic boundary conditions on/off [True]
Note
----
* ``pbc=False`` Only works for orthogonal boxes.
* Care must be taken such that all particles are inside
the bounding box as defined by the box argument for non-PBC
calculations.
* In case of Non-PBC calculations, a bounding box must be provided
to encompass all the coordinates as well as the search coordinates.
The dimension should be similar to ``box`` argument but for
an orthogonal box. For instance, one valid set of argument
for ``box`` for the case of no PBC could be
``[10, 10, 10, 90, 90, 90]``
* Following operations are advisable for non-PBC calculations
.. code-block:: python
lmax = all_coords.max(axis=0)
lmin = all_coords.min(axis=0)
pseudobox[:3] = 1.1*(lmax - lmin)
pseudobox[3:] = 90.
shift = all_coords.copy()
shift -= lmin
gridsearch = FastNS(max_cutoff, shift, box=pseudobox, pbc=False)
"""
if (coords.ndim != 2 or coords.shape[1] != 3):
raise ValueError("coords must have a shape of (n, 3), got {}."
"".format(coords.shape))
if box.shape != (6,):
raise ValueError("Box must be a numpy array of [lx, ly, lz, alpha, beta, gamma], got {}"
"".format(box))
if (box[:3] == 0.0).any():
raise ValueError("Any of the box dimensions cannot be 0")
if cutoff < 0:
raise ValueError("Cutoff must be positive")
self.cutoff = cutoff
max_cutoff = self._prepare_box(box, pbc)
if cutoff > max_cutoff:
raise ValueError("Cutoff {} too large for box (max {})".format(cutoff, max_cutoff))
self._pack_grid(coords)
cdef float _prepare_box(self, box, bint pbc):
"""
Parameters
----------
box : numpy ndarray shape=(6,)
Box info, [lx, ly, lz, alpha, beta, gamma]
pbc : bool
is this NSGrid periodic at all?
Returns
-------
max_cutoff : float
the maximum allowable cutoff given the box shape and size
"""
cdef float cutoff, min_cellsize, max_cutoff, new_cellsize
cdef int i
from MDAnalysis.lib.mdamath import triclinic_vectors
for i in range(3):
self.dimensions[i] = box[i]
self.half_dimensions[i] = 0.5 * box[i]
self.inverse_dimensions[i] = 1.0 / box[i]
self.dimensions[3] = box[3]
self.dimensions[4] = box[4]
self.dimensions[5] = box[5]
self.triclinic_dimensions = triclinic_vectors(box).reshape((9,))
self.triclinic = (self.triclinic_dimensions[XY] != 0 or
self.triclinic_dimensions[XZ] != 0 or
self.triclinic_dimensions[YZ] != 0)
cutoff = max(self.cutoff, 1.0) # TODO: Figure out max ncells and stick to that
# Find maximum allowable cutoff
# For orthogonal cell this is just half the shortest boxlength (sine values all 1.0)
# For triclinic the box tilt creates a shorter path across the box we must account for
# alpha
max_cutoff = self.triclinic_dimensions[YY] * degsin(self.dimensions[3])
max_cutoff = fmin(max_cutoff, self.triclinic_dimensions[ZZ] * degsin(self.dimensions[3]))
# beta
max_cutoff = fmin(max_cutoff, self.triclinic_dimensions[XX] * degsin(self.dimensions[4]))
max_cutoff = fmin(max_cutoff, self.triclinic_dimensions[ZZ] * degsin(self.dimensions[4]))
# gamma
max_cutoff = fmin(max_cutoff, self.triclinic_dimensions[XX] * degsin(self.dimensions[5]))
max_cutoff = fmin(max_cutoff, self.triclinic_dimensions[YY] * degsin(self.dimensions[5]))
max_cutoff /= 2
# for triclinic cells, we need to worry about the shortest path across the cells
min_cellsize = cutoff
if self.triclinic:
for i in range(3, 6):
# cutoff/sin(theta) to elongate the XX/YY/ZZ dimension to make smallest diagonal large enough
new_cellsize = cutoff / degsin(self.dimensions[i])
min_cellsize = fmax(new_cellsize, min_cellsize)
# add 0.001 here to avoid floating point errors
# will make cells slightly too large as a result, ah well
min_cellsize += 0.001
# If the cell size is too small, indexing overflow will occur. Limit the number
# of cells in any dimension to the cube root of the maximum of 32 bit integer values.
self.ncells[0] = <int> min(math.floor(self.triclinic_dimensions[XX] / min_cellsize), MAX_GRID_DIM)
self.ncells[1] = <int> min(math.floor(self.triclinic_dimensions[YY] / min_cellsize), MAX_GRID_DIM)
self.ncells[2] = <int> min(math.floor(self.triclinic_dimensions[ZZ] / min_cellsize), MAX_GRID_DIM)
self.pbc = pbc
# If there aren't enough cells in a given dimension it's equivalent to one
# this prevents double counting of results if a cell would have the same
# neighbour above and below
if pbc:
for i in range(3):
if self.ncells[i] <= 3:
self.ncells[i] = 1
self.periodic[i] = False
else:
self.periodic[i] = True
else:
for i in range(3):
if self.ncells[i] <= 2:
self.ncells[i] = 1
self.periodic[i] = False
# Off diagonal cellsizes are actually the tilt, i.e. dy/dz or similar
self.cellsize[XX] = self.triclinic_dimensions[XX] / <double> self.ncells[0]
# [YX] and [ZX] are 0
self.cellsize[XY] = self.triclinic_dimensions[XY] / self.triclinic_dimensions[YY]
self.cellsize[YY] = self.triclinic_dimensions[YY] / <double> self.ncells[1]
# [ZY] is zero
self.cellsize[XZ] = self.triclinic_dimensions[XZ] / self.triclinic_dimensions[ZZ]
self.cellsize[YZ] = self.triclinic_dimensions[YZ] / self.triclinic_dimensions[ZZ]
self.cellsize[ZZ] = self.triclinic_dimensions[ZZ] / <double> self.ncells[2]
self.cell_offsets[0] = 0
self.cell_offsets[1] = self.ncells[0]
self.cell_offsets[2] = self.ncells[0] * self.ncells[1]
return max_cutoff
cdef void _pack_grid(self, float[:, :] coords):
"""Assigns coordinates into cells
Parameters
----------
coords : np.ndarray float of shape (ncoords, 3)
Coordinates to populate the box
"""
cdef int i, j
# Linked list for each cell
# Starting coordinate index for each cell (END if empty cell)
self.head_id = np.full(self.cell_offsets[2] * self.ncells[2], END, dtype=np.int32, order='C')
# Next coordinate index in cell for each coordinate (END if end of sequence)
self.next_id = np.full(coords.shape[0], END, dtype=np.int32, order='C')
self.coords_bbox = coords.copy()
with nogil:
if self.triclinic:
_triclinic_pbc(<coordinate*>&self.coords_bbox[0][0],
self.coords_bbox.shape[0],
&self.triclinic_dimensions[0])
else:
_ortho_pbc(<coordinate*>&self.coords_bbox[0][0],
self.coords_bbox.shape[0],
&self.dimensions[0])
for i in range(self.coords_bbox.shape[0]):
j = self.coord2cellid(&self.coords_bbox[i][0])
self.next_id[i] = self.head_id[j]
self.head_id[j] = i
cdef int coord2cellid(self, const float* coord) nogil:
"""Finds the cell-id for the given coordinate
Note
----
Assumes the coordinate is already inside the primary unit cell.
Return wrong cell-id if this is not the case
"""
cdef int xyz[3]
self.coord2cellxyz(coord, xyz)
return xyz[0] + xyz[1] * self.cell_offsets[1] + xyz[2] * self.cell_offsets[2]
cdef void coord2cellxyz(self, const float* coord, int* xyz) nogil:
"""Calculate cell coordinate for coord"""
# This assumes coordinate is inside the primary unit cell
xyz[2] = <int> (coord[2] / self.cellsize[ZZ])
xyz[1] = <int> ((coord[1] - coord[2] * self.cellsize[YZ]) / self.cellsize[YY])
xyz[0] = <int> ((coord[0] - coord[1] * self.cellsize[XY]
- coord[2] * self.cellsize[XZ]) / self.cellsize[XX])
# Make sure cell coordinate indices are within the primary unit cell
# (better safe than sorry):
xyz[0] %= self.ncells[0]
xyz[1] %= self.ncells[1]
xyz[2] %= self.ncells[2]
cdef int cellxyz2cellid(self, int cx, int cy, int cz) nogil:
"""Convert cell coordinate to cell id, END for out of bounds"""
if cx < 0:
if self.periodic[0]:
cx = self.ncells[0] - 1
else:
return END
elif cx == self.ncells[0]:
if self.periodic[0]:
cx = 0
else:
return END
if cy < 0:
if self.periodic[1]:
cy = self.ncells[1] - 1
else:
return END
elif cy == self.ncells[1]:
if self.periodic[1]:
cy = 0
else:
return END
if cz < 0:
if self.periodic[2]:
cz = self.ncells[2] - 1
else:
return END
elif cz == self.ncells[2]:
if self.periodic[2]:
cz = 0
else:
return END
return cx + cy * self.cell_offsets[1] + cz * self.cell_offsets[2]
cdef double calc_distsq(self, const float* a, const float* b) nogil:
cdef double dx[3]
dx[0] = a[0] - b[0]
dx[1] = a[1] - b[1]
dx[2] = a[2] - b[2]
if self.pbc:
if self.triclinic:
minimum_image_triclinic(dx, &self.triclinic_dimensions[0])
else:
_minimum_image_ortho_lazy(dx, &self.dimensions[0],
&self.half_dimensions[0])
return dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2]
def search(self, float[:, :] search_coords):
"""Search a group of atoms against initialized coordinates
Creates a new grid with the query atoms and searches
against the initialized coordinates. The search is exclusive
i.e. only the pairs ``(i, j)`` such that ``atom[i]`` from query atoms
and ``atom[j]`` from the initialized set of coordinates is stored as
neighbors.
PBC-aware/non PBC-aware calculations are automatically enabled during
the instantiation of :class:FastNS.
Parameters
----------
search_coords : numpy.ndarray
Query coordinates of shape ``(N, 3)`` where
``N`` is the number of queries
Returns
-------
results : NSResults
An :class:`NSResults` object holding neighbor search results, which
can be accessed by its methods :meth:`~NSResults.get_pairs` and
:meth:`~NSResults.get_pair_distances`.
Note
----
For non-PBC aware calculations, the current implementation doesn't work
if any of the query coordinates lies outside the `box` supplied to
:class:`~MDAnalysis.lib.nsgrid.FastNS`.
"""
cdef int i, j, size_search
cdef int cx, cy, cz
cdef int cellid
cdef int xi, yi, zi
cdef int cellcoord[3]
cdef float tmpcoord[3]
cdef NSResults results = NSResults()
cdef double d2, cutoff2
cutoff2 = self.cutoff * self.cutoff
if (search_coords.ndim != 2 or search_coords.shape[1] != 3):
raise ValueError("search_coords must have a shape of (n, 3), got "
"{}.".format(search_coords.shape))
with nogil:
size_search = search_coords.shape[0]
for i in range(size_search):
tmpcoord[0] = search_coords[i][0]
tmpcoord[1] = search_coords[i][1]
tmpcoord[2] = search_coords[i][2]
if self.triclinic:
_triclinic_pbc(<coordinate*>&tmpcoord[0], 1,
&self.triclinic_dimensions[0])
else:
_ortho_pbc(<coordinate*>&tmpcoord[0], 1,
&self.dimensions[0])
# which cell is atom *i* in
self.coord2cellxyz(&tmpcoord[0], cellcoord)
# loop over all 27 neighbouring cells
for xi in range(3):
for yi in range(3):
for zi in range(3):
cx = cellcoord[0] - 1 + xi
cy = cellcoord[1] - 1 + yi
cz = cellcoord[2] - 1 + zi
cellid = self.cellxyz2cellid(cx, cy, cz)
if cellid == END: # out of bounds
continue
# for loop over atoms in searchcoord
j = self.head_id[cellid]
while (j != END):
d2 = self.calc_distsq(&tmpcoord[0],
&self.coords_bbox[j][0])
if d2 <= cutoff2:
# place search_coords then self.bbox_coords
results.add_neighbors(i, j, d2)
j = self.next_id[j]
return results
def self_search(self):
"""Searches all the pairs within the initialized coordinates
All the pairs among the initialized coordinates are registered
in hald the time. Although the algorithm is still the same, but
the distance checks can be reduced to half in this particular case
as every pair need not be evaluated twice.
Returns
-------
results : NSResults
An :class:`NSResults` object holding neighbor search results, which
can be accessed by its methods :meth:`~NSResults.get_pairs` and
:meth:`~NSResults.get_pair_distances`.
"""
cdef int cx, cy, cz, ox, oy, oz
cdef int ci, cj, i, j, nj
cdef NSResults results = NSResults()
cdef double d2
cdef double cutoff2 = self.cutoff * self.cutoff
# route over 13 neighbouring cells
cdef int[13][3] route = [[1, 0, 0], [1, 1, 0], [0, 1, 0], [-1, 1, 0],
[1, 0, -1], [1, 1, -1], [0, 1, -1], [-1, 1, -1],
[1, 0, 1], [1, 1, 1], [0, 1, 1], [-1, 1, 1], [0, 0, 1]]
for cx in range(self.ncells[0]):
for cy in range(self.ncells[1]):
for cz in range(self.ncells[2]):
ci = self.cellxyz2cellid(cx, cy, cz)
i = self.head_id[ci]
while (i != END):
# pairwise within this cell
j = self.next_id[i]
while (j != END):
d2 = self.calc_distsq(&self.coords_bbox[i][0],
&self.coords_bbox[j][0])
if d2 <= cutoff2:
results.add_neighbors(i, j, d2)
j = self.next_id[j]
# loop over 13 neighbouring cells
for nj in range(13):
ox = cx + route[nj][0]
oy = cy + route[nj][1]
oz = cz + route[nj][2]
cj = self.cellxyz2cellid(ox, oy, oz)
if cj == END:
continue
j = self.head_id[cj]
while (j != END):
d2 = self.calc_distsq(&self.coords_bbox[i][0],
&self.coords_bbox[j][0])
if d2 <= cutoff2:
results.add_neighbors(i, j, d2)
j = self.next_id[j]
# move to next position in cell *ci*
i = self.next_id[i]
return results
|