1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
PeriodicKDTree --- :mod:`MDAnalysis.lib.pkdtree`
================================================
This module contains a class to allow searches on a KDTree involving periodic
boundary conditions.
"""
import itertools
import numpy as np
from scipy.spatial import cKDTree
from ._cutil import unique_int_1d
from ._augment import augment_coordinates, undo_augment
from .util import unique_rows
from MDAnalysis.lib.distances import apply_PBC
import numpy.typing as npt
from typing import Optional, ClassVar
__all__ = ["PeriodicKDTree"]
class PeriodicKDTree(object):
"""Wrapper around :class:`scipy.spatial.cKDTree`
Creates an object which can handle periodic as well as
non periodic boundary condtions depending on the parameters
provided while constructing the tree.
To enable periodic boundary conditions, box dimensions must be
provided. Periodic Boundary conditions are implemented by creating
duplicates of the particles which are within the specified cutoff
distance from the boundary. These duplicates along with the
original particle coordinates are used with the cKDTree without
any special treatment due to PBC beyond this point. The final
results after any operation with duplicate particle indices can be
traced back to the original particle using the
:func:`MDAnalysis.lib.distances.undo_augment` function.
"""
def __init__(
self, box: Optional[npt.ArrayLike] = None, leafsize: int = 10
) -> None:
"""
Parameters
----------
box : array-like or ``None``, optional, default ``None``
Simulation cell dimensions in the form of
:attr:`MDAnalysis.trajectory.timestep.Timestep.dimensions` when
periodic boundary conditions should be taken into account for
the calculation of contacts.
leafsize : int (optional)
Number of entries in leafs of the KDTree. If you suffer poor
performance you can play around with this number. Increasing the
`leafsize` will speed up the construction of the KDTree but
slow down the search.
"""
self.leafsize = leafsize
self.dim = 3 # 3D systems
self.box = box
self._built = False
self.cutoff: Optional[float] = None
@property
def pbc(self):
"""Flag to indicate the presence of periodic boundaries.
- ``True`` if PBC are taken into account
- ``False`` if no unitcell dimension is available.
This is a managed attribute and can only be read.
"""
return self.box is not None
def set_coords(
self, coords: npt.ArrayLike, cutoff: Optional[float] = None
) -> None:
"""Constructs KDTree from the coordinates
Wrapping of coordinates to the primary unit cell is enforced
before any distance evaluations. If periodic boundary conditions
are enabled, then duplicate particles are generated in the
vicinity of the box. An additional array `mapping` is also
generated which can be later used to trace the origin of
duplicate particle coordinates.
For non-periodic calculations, cutoff should not be provided
the parameter is only required for periodic calculations.
Parameters
----------
coords: array_like
Coordinate array of shape ``(N, 3)`` for N atoms.
cutoff: float
Specified cutoff distance to create duplicate images
Typically equivalent to the desired search radius
or the maximum of the desired cutoff radius. Relevant images
corresponding to every atom which lies
within ``cutoff`` distance from either of the box boundary
will be generated.
See Also
--------
MDAnalysis.lib.distances.augment_coordinates
"""
# set coords dtype to float32
# augment coordinates will work only with float32
coords = np.asarray(coords, dtype=np.float32)
# If no cutoff distance is provided but PBC aware
if self.pbc:
self.cutoff = cutoff
if cutoff is None:
raise RuntimeError(
"Provide a cutoff distance" " with tree.set_coords(...)"
)
# Bring the coordinates in the central cell
self.coords = apply_PBC(coords, self.box)
# generate duplicate images
self.aug, self.mapping = augment_coordinates(
self.coords, self.box, cutoff
)
# Images + coords
self.all_coords = np.concatenate([self.coords, self.aug])
self.ckdt = cKDTree(self.all_coords, leafsize=self.leafsize)
else:
# if cutoff distance is provided for non PBC calculations
if cutoff is not None:
raise RuntimeError(
"Donot provide cutoff distance for"
" non PBC aware calculations"
)
self.coords = coords
self.ckdt = cKDTree(self.coords, self.leafsize)
self._built = True
def search(self, centers: npt.ArrayLike, radius: float) -> npt.NDArray:
"""Search all points within radius from centers and their periodic images.
All the centers coordinates are wrapped around the central cell
to enable distance evaluations from points in the tree
and their images.
Parameters
----------
centers: array_like (N,3)
coordinate array to search for neighbors
radius: float
maximum distance to search for neighbors.
"""
if not self._built:
raise RuntimeError("Unbuilt tree. Run tree.set_coords(...)")
centers = np.asarray(centers)
if centers.shape == (self.dim,):
centers = centers.reshape((1, self.dim))
# Sanity check
if self.pbc:
if self.cutoff is None:
raise ValueError(
"Cutoff needs to be provided when working with PBC."
)
if self.cutoff < radius:
raise RuntimeError(
"Set cutoff greater or equal to the radius."
)
# Bring all query points to the central cell
wrapped_centers = apply_PBC(centers, self.box)
indices = list(self.ckdt.query_ball_point(wrapped_centers, radius))
self._indices = np.array(
list(itertools.chain.from_iterable(indices)), dtype=np.intp
)
if self._indices.size > 0:
self._indices = undo_augment(
self._indices, self.mapping, len(self.coords)
)
else:
wrapped_centers = np.asarray(centers)
indices = list(self.ckdt.query_ball_point(wrapped_centers, radius))
self._indices = np.array(
list(itertools.chain.from_iterable(indices)), dtype=np.intp
)
self._indices = np.asarray(unique_int_1d(self._indices))
return self._indices
def get_indices(self) -> npt.NDArray:
"""Return the neighbors from the last query.
Returns
------
indices : NDArray
neighbors for the last query points and search radius
"""
return self._indices
def search_pairs(self, radius: float) -> npt.NDArray:
"""Search all the pairs within a specified radius
Parameters
----------
radius : float
Maximum distance between pairs of coordinates
Returns
-------
pairs : array
Indices of all the pairs which are within the specified radius
"""
if not self._built:
raise RuntimeError(" Unbuilt Tree. Run tree.set_coords(...)")
if self.pbc:
if self.cutoff is None:
raise ValueError(
"Cutoff needs to be provided when working with PBC."
)
if self.cutoff < radius:
raise RuntimeError(
"Set cutoff greater or equal to the radius."
)
pairs = np.array(list(self.ckdt.query_pairs(radius)), dtype=np.intp)
if self.pbc:
if len(pairs) > 1:
pairs[:, 0] = undo_augment(
pairs[:, 0], self.mapping, len(self.coords)
)
pairs[:, 1] = undo_augment(
pairs[:, 1], self.mapping, len(self.coords)
)
if pairs.size > 0:
# First sort the pairs then pick the unique pairs
pairs = np.sort(pairs, axis=1)
pairs = unique_rows(pairs)
return pairs
def search_tree(self, centers: npt.ArrayLike, radius: float) -> np.ndarray:
"""
Searches all the pairs within `radius` between `centers`
and ``coords``
``coords`` are the already initialized coordinates in the tree
during :meth:`set_coords`.
``centers`` are wrapped around the primary unit cell
if PBC is desired. Minimum image convention (PBC) is
activated if the `box` argument is provided during
class initialization
Parameters
----------
centers: array_like (N,3)
coordinate array to search for neighbors
radius: float
maximum distance to search for neighbors.
Returns
-------
pairs : array
all the pairs between ``coords`` and ``centers``
Note
----
This method constructs another tree from the ``centers``
and queries the previously built tree (built in
:meth:`set_coords`)
"""
if not self._built:
raise RuntimeError("Unbuilt tree. Run tree.set_coords(...)")
centers = np.asarray(centers)
if centers.shape == (self.dim,):
centers = centers.reshape((1, self.dim))
# Sanity check
if self.pbc:
if self.cutoff is None:
raise ValueError(
"Cutoff needs to be provided when working with PBC."
)
if self.cutoff < radius:
raise RuntimeError(
"Set cutoff greater or equal to the radius."
)
# Bring all query points to the central cell
wrapped_centers = apply_PBC(centers, self.box)
other_tree = cKDTree(wrapped_centers, leafsize=self.leafsize)
pairs = other_tree.query_ball_tree(self.ckdt, radius)
pairs = np.array(
[[i, j] for i, lst in enumerate(pairs) for j in lst],
dtype=np.intp,
)
if pairs.size > 0:
pairs[:, 1] = undo_augment(
pairs[:, 1], self.mapping, len(self.coords)
)
else:
other_tree = cKDTree(centers, leafsize=self.leafsize)
pairs = other_tree.query_ball_tree(self.ckdt, radius)
pairs = np.array(
[[i, j] for i, lst in enumerate(pairs) for j in lst],
dtype=np.intp,
)
if pairs.size > 0:
pairs = unique_rows(pairs)
return pairs
|