1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
# cython: language_level=3
# -----------------------------------------------------------------------------
# Author(s) of Original Implementation:
# Douglas L. Theobald
# Department of Biochemistry
# MS 009
# Brandeis University
# 415 South St
# Waltham, MA 02453
# USA
#
# dtheobald@brandeis.edu
#
# Pu Liu
# Johnson & Johnson Pharmaceutical Research and Development, L.L.C.
# 665 Stockton Drive
# Exton, PA 19341
# USA
#
# pliu24@its.jnj.com
#
# For the original code written in C see:
# http://theobald.brandeis.edu/qcp/
#
#
# Author of Python Port:
# Joshua L. Adelman
# Department of Biological Sciences
# University of Pittsburgh
# Pittsburgh, PA 15260
#
# jla65@pitt.edu
#
#
# If you use this QCP rotation calculation method in a publication, please
# reference:
#
# Douglas L. Theobald (2005)
# "Rapid calculation of RMSD using a quaternion-based characteristic
# polynomial."
# Acta Crystallographica A 61(4):478-480.
#
# Pu Liu, Dmitris K. Agrafiotis, and Douglas L. Theobald (2010)
# "Fast determination of the optimal rotational matrix for macromolecular
# superpositions."
# J. Comput. Chem. 31, 1561-1563.
#
#
# Copyright (c) 2009-2010, Pu Liu and Douglas L. Theobald
# Copyright (c) 2011 Joshua L. Adelman
# Copyright (c) 2016 Robert R. Delgado
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list
# of conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the <ORGANIZATION> nor the names of its contributors may be used to
# endorse or promote products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# -----------------------------------------------------------------------------
"""
Fast QCP RMSD structure alignment --- :mod:`MDAnalysis.lib.qcprot`
==================================================================
:Author: Joshua L. Adelman, University of Pittsburgh
:Author: Robert R. Delgado, Cornell University and Arizona State University
:Contact: jla65@pitt.edu
:Year: 2011, 2016
:Licence: BSD
PyQCPROT_ is a python/cython implementation of Douglas Theobald's QCP
method for calculating the minimum RMSD between two structures
[Theobald2005]_ and determining the optimal least-squares rotation
matrix [Liu2010]_.
A full description of the method, along with the original C implementation can
be found at http://theobald.brandeis.edu/qcp/
See Also
--------
MDAnalysis.analysis.align:
Align structures using :func:`CalcRMSDRotationalMatrix`
MDAnalysis.analysis.rms.rmsd:
Calculate the RMSD between two structures using
:func:`CalcRMSDRotationalMatrix`
.. versionchanged:: 0.16.0
Call signatures were changed to directly interface with MDAnalysis
coordinate arrays: shape (N, 3)
References
----------
If you use this QCP rotation calculation method in a publication, please
reference:
.. [Theobald2005] Douglas L. Theobald (2005)
"Rapid calculation of RMSD using a quaternion-based characteristic
polynomial." Acta Crystallographica A 61(4):478-480.
.. [Liu2010] Pu Liu, Dmitris K. Agrafiotis, and Douglas L. Theobald (2010)
"Fast determination of the optimal rotational matrix for macromolecular
superpositions." J. Comput. Chem. 31, 1561-1563.
.. _PyQCPROT: https://github.com/synapticarbors/pyqcprot
Functions
---------
Users will typically use the :func:`CalcRMSDRotationalMatrix` function.
.. autofunction:: CalcRMSDRotationalMatrix
.. autofunction:: InnerProduct
.. autofunction:: FastCalcRMSDAndRotation
"""
import numpy as np
cimport numpy as cnp
cnp.import_array()
cimport cython
from ..due import due, BibTeX, Doi
# providing DOI for this citation doesnt seem to work (as of 22/04/18)
_QCBIB = """\
@article{qcprot2,
author = {Pu Liu and Dimitris K. Agrafiotis and Douglas L. Theobald},
title = {Fast determination of the optimal rotational matrix for macromolecular superpositions},
journal = {Journal of Computational Chemistry},
volume = {31},
number = {7},
pages = {1561-1563},
doi = {10.1002/jcc.21439},
}
"""
due.cite(Doi("10.1107/s0108767305015266"),
description="QCProt implementation",
path="MDAnalysis.lib.qcprot",
cite_module=True)
due.cite(BibTeX(_QCBIB),
description="QCProt implementation",
path="MDAnalysis.lib.qcprot",
cite_module=True)
import cython
cdef extern from "math.h":
double sqrt(double x)
double fabs(double x)
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef cython.floating InnerProduct(cython.floating[:] A,
cython.floating[:, :] coords1,
cython.floating[:, :] coords2,
int N,
cython.floating[:] weight):
"""Calculate the inner product of two structures.
Parameters
----------
A : ndarray
result inner product array, modified in place
coords1 : ndarray
reference structure
coords2 : ndarray
candidate structure
N : int
size of system
weight : ndarray or None
used to calculate weighted inner product
Returns
-------
E0 : float
0.5 * (G1 + G2), can be used as input for :func:`FastCalcRMSDAndRotation`
Notes
-----
1. You MUST center the structures, coords1 and coords2, before calling this
function.
2. Coordinates are stored as Nx3 arrays (as everywhere else in MDAnalysis).
.. versionchanged:: 0.16.0
Array size changed from 3xN to Nx3.
.. versionchanged:: 2.7.0
Updating to allow either float32 or float64 inputs
"""
cdef cython.floating x1, x2, y1, y2, z1, z2
cdef unsigned int i
cdef cython.floating G1, G2
G1 = 0.0
G2 = 0.0
A[0] = A[1] = A[2] = A[3] = A[4] = A[5] = A[6] = A[7] = A[8] = 0.0
if (weight is not None):
for i in range(N):
x1 = weight[i] * coords1[i, 0]
y1 = weight[i] * coords1[i, 1]
z1 = weight[i] * coords1[i, 2]
G1 += x1 * coords1[i, 0] + y1 * coords1[i, 1] + z1 * coords1[i, 2]
x2 = coords2[i, 0]
y2 = coords2[i, 1]
z2 = coords2[i, 2]
G2 += weight[i] * (x2 * x2 + y2 * y2 + z2 * z2)
A[0] += (x1 * x2)
A[1] += (x1 * y2)
A[2] += (x1 * z2)
A[3] += (y1 * x2)
A[4] += (y1 * y2)
A[5] += (y1 * z2)
A[6] += (z1 * x2)
A[7] += (z1 * y2)
A[8] += (z1 * z2)
else:
for i in range(N):
x1 = coords1[i, 0]
y1 = coords1[i, 1]
z1 = coords1[i, 2]
G1 += (x1 * x1 + y1 * y1 + z1 * z1)
x2 = coords2[i, 0]
y2 = coords2[i, 1]
z2 = coords2[i, 2]
G2 += (x2 * x2 + y2 * y2 + z2 * z2)
A[0] += (x1 * x2)
A[1] += (x1 * y2)
A[2] += (x1 * z2)
A[3] += (y1 * x2)
A[4] += (y1 * y2)
A[5] += (y1 * z2)
A[6] += (z1 * x2)
A[7] += (z1 * y2)
A[8] += (z1 * z2)
return (G1 + G2) * 0.5
@cython.boundscheck(False)
@cython.wraparound(False)
def CalcRMSDRotationalMatrix(cython.floating[:, :] ref not None,
cython.floating[:, :] conf not None,
int N,
cython.floating[:] rot,
cython.floating[:] weights) -> float:
"""
Calculate the RMSD & rotational matrix.
Parameters
----------
ref : ndarray
reference structure coordinates, shape (N, 3)
conf : ndarray
condidate structure coordinates, shape (N, 3)
N : int
size of the system
rot : ndarray or None
array to store rotation matrix. If given must be flat and shape (9,)
weights : ndarray or None
weights for each component
Returns
-------
rmsd : float
RMSD value
.. versionchanged:: 0.16.0
Array size changed from 3xN to Nx3.
.. versionchanged:: 2.7.0
Changed arguments to floating type, can accept either float32 or float64 inputs
"""
cdef cython.floating E0
cdef cython.floating A[9]
cdef cython.floating[:] A_view
A_view = A
E0 = InnerProduct(A_view, conf, ref, N, weights)
return FastCalcRMSDAndRotation(rot, A_view, E0, N)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cpdef double FastCalcRMSDAndRotation(cython.floating[:] rot,
cython.floating[:] A,
cython.floating E0,
int N):
"""
Calculate the RMSD, and/or the optimal rotation matrix.
Parameters
----------
rot : ndarray or None
result rotation matrix, modified inplace
A : ndarray
the inner product of two structures
E0 : floating
0.5 * (G1 + G2)
N : int
size of the system
Returns
-------
rmsd : double
RMSD value for two structures
.. versionchanged:: 0.16.0
Array sized changed from 3xN to Nx3.
.. versionchanged:: 2.7.0
Changed arguments to floating type, can accept either float32 or float64 inputs. Internally still uses
double precision for QCP algorithm
"""
cdef double Sxx, Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, Szz
cdef double Szz2, Syy2, Sxx2, Sxy2, Syz2, Sxz2, Syx2, Szy2, Szx2,
cdef double SyzSzymSyySzz2, Sxx2Syy2Szz2Syz2Szy2, Sxy2Sxz2Syx2Szx2,
cdef double SxzpSzx, SyzpSzy, SxypSyx, SyzmSzy,
cdef double SxzmSzx, SxymSyx, SxxpSyy, SxxmSyy
cdef double[4] C
cdef unsigned int i
cdef double mxEigenV
cdef double oldg = 0.0
cdef double b, a, delta, rms, qsqr
cdef double q1, q2, q3, q4, normq
cdef double a11, a12, a13, a14, a21, a22, a23, a24
cdef double a31, a32, a33, a34, a41, a42, a43, a44
cdef double a2, x2, y2, z2
cdef double xy, az, zx, ay, yz, ax
cdef double a3344_4334, a3244_4234, a3243_4233, a3143_4133, a3144_4134, a3142_4132
cdef double evecprec = 1e-6
cdef double evalprec = 1e-14
cdef double a1324_1423, a1224_1422, a1223_1322, a1124_1421, a1123_1321, a1122_1221
C[0] = C[1] = C[2] = C[3] = 0.0
Sxx = A[0]
Sxy = A[1]
Sxz = A[2]
Syx = A[3]
Syy = A[4]
Syz = A[5]
Szx = A[6]
Szy = A[7]
Szz = A[8]
Sxx2 = Sxx * Sxx
Syy2 = Syy * Syy
Szz2 = Szz * Szz
Sxy2 = Sxy * Sxy
Syz2 = Syz * Syz
Sxz2 = Sxz * Sxz
Syx2 = Syx * Syx
Szy2 = Szy * Szy
Szx2 = Szx * Szx
SyzSzymSyySzz2 = 2.0 * (Syz*Szy - Syy*Szz)
Sxx2Syy2Szz2Syz2Szy2 = Syy2 + Szz2 - Sxx2 + Syz2 + Szy2
C[2] = -2.0 * (Sxx2 + Syy2 + Szz2 + Sxy2 + Syx2 + Sxz2 + Szx2 + Syz2 + Szy2)
C[1] = 8.0 * (Sxx*Syz*Szy + Syy*Szx*Sxz + Szz*Sxy*Syx - Sxx*Syy*Szz - Syz*Szx*Sxy - Szy*Syx*Sxz)
SxzpSzx = Sxz + Szx
SyzpSzy = Syz + Szy
SxypSyx = Sxy + Syx
SyzmSzy = Syz - Szy
SxzmSzx = Sxz - Szx
SxymSyx = Sxy - Syx
SxxpSyy = Sxx + Syy
SxxmSyy = Sxx - Syy
Sxy2Sxz2Syx2Szx2 = Sxy2 + Sxz2 - Syx2 - Szx2
C[0] = (Sxy2Sxz2Syx2Szx2 * Sxy2Sxz2Syx2Szx2
+ (Sxx2Syy2Szz2Syz2Szy2 + SyzSzymSyySzz2) * (Sxx2Syy2Szz2Syz2Szy2 - SyzSzymSyySzz2)
+ (-(SxzpSzx)*(SyzmSzy)+(SxymSyx)*(SxxmSyy-Szz)) * (-(SxzmSzx)*(SyzpSzy)+(SxymSyx)*(SxxmSyy+Szz))
+ (-(SxzpSzx)*(SyzpSzy)-(SxypSyx)*(SxxpSyy-Szz)) * (-(SxzmSzx)*(SyzmSzy)-(SxypSyx)*(SxxpSyy+Szz))
+ (+(SxypSyx)*(SyzpSzy)+(SxzpSzx)*(SxxmSyy+Szz)) * (-(SxymSyx)*(SyzmSzy)+(SxzpSzx)*(SxxpSyy+Szz))
+ (+(SxypSyx)*(SyzmSzy)+(SxzmSzx)*(SxxmSyy-Szz)) * (-(SxymSyx)*(SyzpSzy)+(SxzmSzx)*(SxxpSyy-Szz)))
mxEigenV = E0
for i in range(50):
oldg = mxEigenV
x2 = mxEigenV*mxEigenV
b = (x2 + C[2])*mxEigenV
a = b + C[1]
delta = ((a*mxEigenV + C[0])/(2.0*x2*mxEigenV + b + a))
mxEigenV -= delta
if (fabs(mxEigenV - oldg) < fabs((evalprec)*mxEigenV)):
break
# if (i == 50):
# print "\nMore than %d iterations needed!\n" % (i)
# the fabs() is to guard against extremely small,
# but *negative* numbers due to floating point error
rms = sqrt(fabs(2.0 * (E0 - mxEigenV)/N))
if rot is None:
return rms # Don't bother with rotation.
a11 = SxxpSyy + Szz-mxEigenV
a12 = SyzmSzy
a13 = - SxzmSzx
a14 = SxymSyx
a21 = SyzmSzy
a22 = SxxmSyy - Szz-mxEigenV
a23 = SxypSyx
a24= SxzpSzx
a31 = a13
a32 = a23
a33 = Syy-Sxx-Szz - mxEigenV
a34 = SyzpSzy
a41 = a14
a42 = a24
a43 = a34
a44 = Szz - SxxpSyy - mxEigenV
a3344_4334 = a33 * a44 - a43 * a34
a3244_4234 = a32 * a44 - a42*a34
a3243_4233 = a32 * a43 - a42 * a33
a3143_4133 = a31 * a43 - a41*a33
a3144_4134 = a31 * a44 - a41 * a34
a3142_4132 = a31 * a42 - a41*a32
q1 = a22 * a3344_4334 - a23 * a3244_4234 + a24 * a3243_4233
q2 = -a21 * a3344_4334 + a23 * a3144_4134 - a24 * a3143_4133
q3 = a21 * a3244_4234 - a22 * a3144_4134 + a24 * a3142_4132
q4 = -a21 * a3243_4233 + a22 * a3143_4133 - a23 * a3142_4132
qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4
# The following code tries to calculate another column in the adjoint matrix
# when the norm of the current column is too small. Usually this commented
# block will never be activated. To be absolutely safe this should be
# uncommented, but it is most likely unnecessary.
if (qsqr < evecprec):
q1 = a12*a3344_4334 - a13*a3244_4234 + a14*a3243_4233
q2 = -a11*a3344_4334 + a13*a3144_4134 - a14*a3143_4133
q3 = a11*a3244_4234 - a12*a3144_4134 + a14*a3142_4132
q4 = -a11*a3243_4233 + a12*a3143_4133 - a13*a3142_4132
qsqr = q1*q1 + q2 *q2 + q3*q3+q4*q4
if (qsqr < evecprec):
a1324_1423 = a13 * a24 - a14 * a23
a1224_1422 = a12 * a24 - a14 * a22
a1223_1322 = a12 * a23 - a13 * a22
a1124_1421 = a11 * a24 - a14 * a21
a1123_1321 = a11 * a23 - a13 * a21
a1122_1221 = a11 * a22 - a12 * a21
q1 = a42 * a1324_1423 - a43 * a1224_1422 + a44 * a1223_1322
q2 = -a41 * a1324_1423 + a43 * a1124_1421 - a44 * a1123_1321
q3 = a41 * a1224_1422 - a42 * a1124_1421 + a44 * a1122_1221
q4 = -a41 * a1223_1322 + a42 * a1123_1321 - a43 * a1122_1221
qsqr = q1*q1 + q2 *q2 + q3*q3+q4*q4
if (qsqr < evecprec):
q1 = a32 * a1324_1423 - a33 * a1224_1422 + a34 * a1223_1322
q2 = -a31 * a1324_1423 + a33 * a1124_1421 - a34 * a1123_1321
q3 = a31 * a1224_1422 - a32 * a1124_1421 + a34 * a1122_1221
q4 = -a31 * a1223_1322 + a32 * a1123_1321 - a33 * a1122_1221
qsqr = q1*q1 + q2 *q2 + q3*q3 + q4*q4
if (qsqr < evecprec):
# if qsqr is still too small, return the identity matrix. #
rot[0] = rot[4] = rot[8] = 1.0
rot[1] = rot[2] = rot[3] = rot[5] = rot[6] = rot[7] = 0.0
return rms
normq = sqrt(qsqr)
q1 /= normq
q2 /= normq
q3 /= normq
q4 /= normq
a2 = q1 * q1
x2 = q2 * q2
y2 = q3 * q3
z2 = q4 * q4
xy = q2 * q3
az = q1 * q4
zx = q4 * q2
ay = q1 * q3
yz = q3 * q4
ax = q1 * q2
rot[0] = a2 + x2 - y2 - z2
rot[1] = 2 * (xy + az)
rot[2] = 2 * (zx - ay)
rot[3] = 2 * (xy - az)
rot[4] = a2 - x2 + y2 - z2
rot[5] = 2 * (yz + ax)
rot[6] = 2 * (zx + ay)
rot[7] = 2 * (yz - ax)
rot[8] = a2 - x2 - y2 + z2
return rms
|