1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding: utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
DESRES Molecular Structure file format topology parser
======================================================
Classes to read a topology from a DESRES_ Molecular Structure file
format (DMS_) coordinate files (as used by the Desmond_ MD package).
.. _DESRES: http://www.deshawresearch.com
.. _Desmond: http://www.deshawresearch.com/resources_desmond.html
.. _DMS: http://www.deshawresearch.com/Desmond_Users_Guide-0.7.pdf
Classes
-------
.. autoclass:: DMSParser
:members:
:inherited-members:
"""
import numpy as np
import sqlite3
import os
from .base import TopologyReaderBase, change_squash
from ..core.topology import Topology
from ..core.topologyattrs import (
Atomids,
Atomnames,
Bonds,
Charges,
ChainIDs,
Masses,
Resids,
Resnums,
Resnames,
Segids,
AtomAttr, # for custom Attributes
)
class Atomnums(AtomAttr):
"""The number for each Atom"""
attrname = "atomnums"
singular = "atomnum"
class DMSParser(TopologyReaderBase):
"""Read a topology from a DESRES_ Molecular Structure file.
Format (DMS_) coordinate files (as used by the Desmond_ MD package).
Reads the following attributes:
Atom:
- Atomids
- Atomnums
- Atomnames
- Masses
- Charges
- Chainids
Residue:
- Resnames
- Resids
Segment:
- Segids
.. note::
By default, atomtypes will be guessed on Universe creation.
This may change in release 3.0.
See :ref:`Guessers` for more information.
.. _DESRES: http://www.deshawresearch.com
.. _Desmond: http://www.deshawresearch.com/resources_desmond.html
.. _DMS: http://www.deshawresearch.com/Desmond_Users_Guide-0.7.pdf
.. versionchanged:: 2.8.0
Removed type guessing (attributes guessing takes place now
through universe.guess_TopologyAttrs() API).
"""
format = "DMS"
def parse(self, **kwargs):
"""Parse DMS file *filename* and return the Topology object"""
# Fix by SB: Needed because sqlite3.connect does not raise anything
# if file is not there
if not os.path.isfile(self.filename):
raise IOError("No such file: {0}".format(self.filename))
def dict_factory(cursor, row):
"""
Fetch SQL records as dictionaries, rather than the default tuples.
"""
d = {}
for idx, col in enumerate(cursor.description):
d[col[0]] = row[idx]
return d
attrs = {}
# Row factories for different data types
facs = {
np.int32: lambda c, r: r[0],
np.float32: lambda c, r: r[0],
object: lambda c, r: str(r[0].strip()),
}
with sqlite3.connect(self.filename) as con:
# Selecting single column, so just strip tuple
for attrname, dt in [
("id", np.int32),
("anum", np.int32),
("mass", np.float32),
("charge", np.float32),
("name", object),
("resname", object),
("resid", np.int32),
("chain", object),
("segid", object),
]:
try:
cur = con.cursor()
cur.row_factory = facs[dt]
cur.execute("SELECT {} FROM particle" "".format(attrname))
vals = cur.fetchall()
except sqlite3.DatabaseError:
errmsg = "Failed reading the atoms from DMS Database"
raise IOError(errmsg) from None
else:
attrs[attrname] = np.array(vals, dtype=dt)
try:
cur.row_factory = dict_factory
cur.execute("SELECT * FROM bond")
bonds = cur.fetchall()
except sqlite3.DatabaseError:
errmsg = "Failed reading the bonds from DMS Database"
raise IOError(errmsg) from None
else:
bondlist = []
bondorder = {}
for b in bonds:
desc = tuple(sorted([b["p0"], b["p1"]]))
bondlist.append(desc)
bondorder[desc] = b["order"]
attrs["bond"] = bondlist
attrs["bondorder"] = bondorder
topattrs = []
# Bundle in Atom level objects
for attr, cls in [
("id", Atomids),
("anum", Atomnums),
("mass", Masses),
("charge", Charges),
("name", Atomnames),
("chain", ChainIDs),
]:
topattrs.append(cls(attrs[attr]))
# Residues
atom_residx, (res_resids, res_resnums, res_resnames, res_segids) = (
change_squash(
(attrs["resid"], attrs["resname"], attrs["segid"]),
(
attrs["resid"],
attrs["resid"].copy(),
attrs["resname"],
attrs["segid"],
),
)
)
n_residues = len(res_resids)
topattrs.append(Resids(res_resids))
topattrs.append(Resnums(res_resnums))
topattrs.append(Resnames(res_resnames))
if any(res_segids) and not any(val is None for val in res_segids):
res_segidx, (res_segids,) = change_squash(
(res_segids,), (res_segids,)
)
uniq_seg = np.unique(res_segids)
idx2seg = {idx: res_segids[idx] for idx in res_segidx}
res_segids = uniq_seg
nidx = {segid: nidx for nidx, segid in enumerate(uniq_seg)}
res_segidx = np.array([nidx[idx2seg[idx]] for idx in res_segidx])
n_segments = len(res_segids)
topattrs.append(Segids(res_segids))
else:
n_segments = 1
topattrs.append(Segids(np.array(["SYSTEM"], dtype=object)))
res_segidx = None
topattrs.append(Bonds(attrs["bond"]))
top = Topology(
len(attrs["id"]),
n_residues,
n_segments,
attrs=topattrs,
atom_resindex=atom_residx,
residue_segindex=res_segidx,
)
return top
|