1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""\
Trajectory rotation --- :mod:`MDAnalysis.transformations.rotate`
================================================================
Rotates the coordinates by a given angle arround an axis formed by a direction
and a point.
.. autoclass:: rotateby
"""
import numpy as np
from functools import partial
from ..lib.transformations import rotation_matrix
from ..lib.util import get_weights
from .base import TransformationBase
class rotateby(TransformationBase):
"""
Rotates the trajectory by a given angle on a given axis. The axis is defined by
the user, combining the direction vector and a point. This point can be the center
of geometry or the center of mass of a user defined AtomGroup, or an array defining
custom coordinates.
Note
----
``max_threads`` is set to 1 for this transformation
with which it performs better.
Examples
--------
e.g. rotate the coordinates by 90 degrees on a axis formed by the [0,0,1] vector and
the center of geometry of a given AtomGroup:
.. code-block:: python
from MDAnalysis import transformations
ts = u.trajectory.ts
angle = 90
ag = u.atoms
d = [0,0,1]
rotated = transformations.rotate.rotateby(angle, direction=d, ag=ag)(ts)
e.g. rotate the coordinates by a custom axis:
.. code-block:: python
from MDAnalysis import transformations
ts = u.trajectory.ts
angle = 90
p = [1,2,3]
d = [0,0,1]
rotated = transformations.rotate.rotateby(angle, direction=d, point=p)(ts)
Parameters
----------
angle: float
rotation angle in degrees
direction: array-like
vector that will define the direction of a custom axis of rotation from the
provided point. Expected shapes are (3, ) or (1, 3).
ag: AtomGroup, optional
use the weighted center of an AtomGroup as the point from where the rotation axis
will be defined. If no AtomGroup is given, the `point` argument becomes mandatory
point: array-like, optional
list of the coordinates of the point from where a custom axis of rotation will
be defined. Expected shapes are (3, ) or (1, 3). If no point is given, the
`ag` argument becomes mandatory.
weights: {"mass", ``None``} or array_like, optional
define the weights of the atoms when calculating the center of the AtomGroup.
With ``"mass"`` uses masses as weights; with ``None`` weigh each atom equally.
If a float array of the same length as `ag` is provided, use each element of
the `array_like` as a weight for the corresponding atom in `ag`. Default is
None.
wrap: bool, optional
If `True`, all the atoms from the given AtomGroup will be moved to the unit cell
before calculating the center of mass or geometry. Default is `False`, no changes
to the atom coordinates are done before calculating the center of the AtomGroup.
Returns
-------
MDAnalysis.coordinates.timestep.Timestep
Warning
-------
Wrapping/unwrapping the trajectory or performing PBC corrections may not be possible
after rotating the trajectory.
.. versionchanged:: 2.0.0
The transformation was changed from a function/closure to a class
with ``__call__``.
.. versionchanged:: 2.0.0
The transformation was changed to inherit from the base class for
limiting threads and checking if it can be used in parallel analysis.
"""
def __init__(
self,
angle,
direction,
point=None,
ag=None,
weights=None,
wrap=False,
max_threads=1,
parallelizable=True,
):
super().__init__(
max_threads=max_threads, parallelizable=parallelizable
)
self.angle = angle
self.direction = direction
self.point = point
self.ag = ag
self.weights = weights
self.wrap = wrap
self.angle = np.deg2rad(self.angle)
try:
self.direction = np.asarray(self.direction, np.float32)
if self.direction.shape != (3,) and self.direction.shape != (1, 3):
raise ValueError(
"{} is not a valid direction".format(self.direction)
)
self.direction = self.direction.reshape(
3,
)
except ValueError:
raise ValueError(
f"{self.direction} is not a valid direction"
) from None
if self.point is not None:
self.point = np.asarray(self.point, np.float32)
if self.point.shape != (3,) and self.point.shape != (1, 3):
raise ValueError("{} is not a valid point".format(self.point))
self.point = self.point.reshape(
3,
)
elif self.ag:
try:
self.atoms = self.ag.atoms
except AttributeError:
raise ValueError(
f"{self.ag} is not an AtomGroup object"
) from None
else:
try:
self.weights = get_weights(
self.atoms, weights=self.weights
)
except (ValueError, TypeError):
errmsg = (
"weights must be {'mass', None} or an iterable "
"of the same size as the atomgroup."
)
raise TypeError(errmsg) from None
self.center_method = partial(
self.atoms.center, self.weights, wrap=self.wrap
)
else:
raise ValueError("A point or an AtomGroup must be specified")
def _transform(self, ts):
if self.point is None:
position = self.center_method()
else:
position = self.point
matrix = rotation_matrix(self.angle, self.direction, position)
rotation = matrix[:3, :3].T
translation = matrix[:3, 3]
ts.positions = np.dot(ts.positions, rotation)
ts.positions += translation
return ts
|