File: translate.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (191 lines) | stat: -rw-r--r-- 6,500 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

"""\
Trajectory translation --- :mod:`MDAnalysis.transformations.translate`
======================================================================

Translate the coordinates of a given trajectory by a given vector.
The vector can either be user defined, using the function :func:`translate`
or defined by centering an AtomGroup in the unit cell using the function
:func:`center_in_box`

.. autoclass:: translate

.. autoclass:: center_in_box


"""
import numpy as np
from functools import partial

from .base import TransformationBase


class translate(TransformationBase):
    """
    Translates the coordinates of a given :class:`~MDAnalysis.coordinates.timestep.Timestep`
    instance by a given vector.

    Example
    -------
    .. code-block:: python

        ts = MDAnalysis.transformations.translate([1,2,3])(ts)

    Parameters
    ----------
    vector: array-like
        coordinates of the vector to which the coordinates will be translated

    Returns
    -------
    :class:`~MDAnalysis.coordinates.timestep.Timestep` object


    .. versionchanged:: 2.0.0
       The transformation was changed from a function/closure to a class
       with ``__call__``.
    .. versionchanged:: 2.0.0
       The transformation was changed to inherit from the base class for
       limiting threads and checking if it can be used in parallel analysis.
    """

    def __init__(self, vector, max_threads=None, parallelizable=True):
        super().__init__(
            max_threads=max_threads, parallelizable=parallelizable
        )

        self.vector = vector

        if len(self.vector) > 2:
            self.vector = np.float32(self.vector)
        else:
            raise ValueError("{} vector is too short".format(self.vector))

    def _transform(self, ts):
        ts.positions += self.vector
        return ts


class center_in_box(TransformationBase):
    """
    Translates the coordinates of a given :class:`~MDAnalysis.coordinates.timestep.Timestep`
    instance so that the center of geometry/mass of the given :class:`~MDAnalysis.core.groups.AtomGroup`
    is centered on the unit cell. The unit cell dimensions are taken from the input Timestep object.
    If a point is given, the center of the atomgroup will be translated to this point instead.

    Example
    -------

    .. code-block:: python

        ag = u.residues[1].atoms
        ts = MDAnalysis.transformations.center(ag,center='mass')(ts)

    Parameters
    ----------
    ag: AtomGroup
        atom group to be centered on the unit cell.
    center: str, optional
        used to choose the method of centering on the given atom group. Can be 'geometry'
        or 'mass'
    point: array-like, optional
        overrides the unit cell center - the coordinates of the Timestep are translated so
        that the center of mass/geometry of the given AtomGroup is aligned to this position
        instead. Defined as an array of size 3.
    wrap: bool, optional
        If `True`, all the atoms from the given AtomGroup will be moved to the unit cell
        before calculating the center of mass or geometry. Default is `False`, no changes
        to the atom coordinates are done before calculating the center of the AtomGroup.

    Returns
    -------
    :class:`~MDAnalysis.coordinates.timestep.Timestep` object


    .. versionchanged:: 2.0.0
        The transformation was changed from a function/closure to a class
        with ``__call__``.
    .. versionchanged:: 2.0.0
       The transformation was changed to inherit from the base class for
       limiting threads and checking if it can be used in parallel analysis.
    """

    def __init__(
        self,
        ag,
        center="geometry",
        point=None,
        wrap=False,
        max_threads=None,
        parallelizable=True,
    ):
        super().__init__(
            max_threads=max_threads, parallelizable=parallelizable
        )

        self.ag = ag
        self.center = center
        self.point = point
        self.wrap = wrap

        pbc_arg = self.wrap
        if self.point:
            self.point = np.asarray(self.point, np.float32)
            if self.point.shape != (3,) and self.point.shape != (1, 3):
                raise ValueError("{} is not a valid point".format(self.point))
        try:
            if self.center == "geometry":
                self.center_method = partial(
                    self.ag.center_of_geometry, wrap=pbc_arg
                )
            elif self.center == "mass":
                self.center_method = partial(
                    self.ag.center_of_mass, wrap=pbc_arg
                )
            else:
                raise ValueError(f"{self.center} is valid for center")
        except AttributeError:
            if self.center == "mass":
                errmsg = f"{self.ag} is not an AtomGroup object with masses"
                raise AttributeError(errmsg) from None
            else:
                raise ValueError(
                    f"{self.ag} is not an AtomGroup object"
                ) from None

    def _transform(self, ts):
        if self.point is None:
            if ts.dimensions is None:
                raise ValueError("Box is None")
            boxcenter = np.sum(ts.triclinic_dimensions, axis=0) / 2
        else:
            boxcenter = self.point

        ag_center = self.center_method()

        vector = boxcenter - ag_center
        ts.positions += vector

        return ts