1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding: utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
r"""
Constants and unit conversion --- :mod:`MDAnalysis.units`
===============================================================
The base units of MDAnalysis trajectories are the **Å** (**ångström**) for
**length** and **ps** (**pico second**) for **time**. By default, all positions
are in Å and all times are in ps, regardless of how the MD code stored
trajectory data. By default, MDAnalysis converts automatically to the
MDAnalysis units when reading trajectories and converts back when writing. This
makes it possible to write scripts that can be agnostic of the specifics of how
a particular MD code stores trajectory data. Other base units are listed in the
table on :ref:`table-baseunits`.
.. _table-baseunits:
.. Table:: Base units in MDAnalysis as encoded in :data:`MDANALYSIS_BASE_UNITS`
=========== ============== ===============================================
quantity unit SI units
=========== ============== ===============================================
length Å :math:`10^{-10}` m
time ps :math:`10^{-12}` s
energy kJ/mol :math:`1.66053892103219 \times 10^{-21}` J
charge :math:`e` :math:`1.602176565 \times 10^{-19}` As
force kJ/(mol·Å) :math:`1.66053892103219 \times 10^{-11}` J/m
speed Å/ps :math:`100` m/s
=========== ============== ===============================================
Implementation notes
--------------------
All conversions with :func:`convert` are carried out in a simple fashion: the
conversion factor :math:`f_{b,b'}` from the base unit :math:`b` to another unit
:math:`b'` is precomputed and stored (see :ref:`Data`). The numerical value of
a quantity in unit :math:`b` is :math:`X/b` (e.g. for :math:`X =
1.23\,\mathrm{ps}`, the numerical value is :math:`X/\mathrm{ps} =
1.23`). [#funits]_
The new numerical value :math:`X'/b'` of the quantity (in units of :math:`b'`)
is then
.. math::
X'/b' = f_{b,b'} X/b
The function :func:`get_conversion_factor` returns the appropriate factor
:math:`f_{b,b'}`.
Conversion between different units is always carried out via the base unit as
an intermediate step::
x is in u1: from u1 to b: x' = x / factor[u1]
from b to u2: x'' = x' * factor[u2]
so f[u1,u2] = factor[u2]/factor[u1]
Conversions
~~~~~~~~~~~
Examples for how to calculate some of the conversion factors that are
hard-coded in :mod:`~MDAnalysis.units` (see :ref:`Data`).
density:
Base unit is :math:`\mathrm{Å}^{-3}`::
n/x = n/A**3 * densityUnit_factor[x]
Example for how to calculate the conversion factor
:math:`f_{\mathrm{Å}^{-3},\mathrm{nm}^{-3}}` from :math:`\mathrm{Å}^{-3}` to
:math:`\mathrm{nm}^{-3}`:
.. math::
f_{\mathrm{Å}^{-3},\mathrm{nm}^{-3}}
= \frac{1\,\mathrm{nm}^{-3}}{1\,\mathrm{Å}^{-3}}
= \frac{(10\,\mathrm{Å})^{-3}}{1\,\mathrm{Å}^{-3}}
= 10^{-3}
concentration:
Example for how to convert the conversion factor to Molar (mol/l)::
factor = 1 A**-3 / (N_Avogadro * (10**-9 dm)**-3)
relative to a density rho0 in :math:`g/cm^3`::
M(H2O) = 18 g/mol Molar mass of water
factor = 1/(1e-24 * N_Avogadro / M(H2O))
from :math:`\rho/\rho_0 = n/(N_A * M^{-1}) / \rho_0`
where :math:`[n] = 1/Volume`, :math:`[\rho] = mass/Volume`
Note
----
In the future we might move towards using the Quantities_ package or
:mod:`scipy.constants`.
.. _Quantities: http://packages.python.org/quantities/
Functions
---------
.. autofunction:: get_conversion_factor
.. autofunction:: convert
.. _Data:
Data
----
.. autodata:: MDANALYSIS_BASE_UNITS
.. autodata:: constants
.. autodata:: lengthUnit_factor
.. autodata:: water
.. autodata:: densityUnit_factor
.. autodata:: timeUnit_factor
.. autodata:: speedUnit_factor
.. autodata:: forceUnit_factor
.. autodata:: chargeUnit_factor
.. autodata:: conversion_factor
.. autodata:: unit_types
References and footnotes
------------------------
.. footbibliography::
.. _AKMA: http://www.charmm.org/documentation/c37b1/usage.html#%20AKMA
.. _electron charge: http://physics.nist.gov/cgi-bin/cuu/Value?e
.. _`Avogadro's constant`: http://physics.nist.gov/cgi-bin/cuu/Value?na
.. Rubric:: Footnotes
.. [#funits] One can also consider the conversion factor to carry
units :math:`b'/b`, in which case the conversion formula would
become
.. math::
X' = f_{b,b'} X
"""
import warnings
# Remove in 2.8.0
class DeprecatedKeyAccessDict(dict):
deprecated_kB = "Boltzman_constant"
def __getitem__(self, key):
if key == self.deprecated_kB:
wmsg = (
"Please use 'Boltzmann_constant' henceforth. The key "
"'Boltzman_constant' was a typo and will be removed "
"in MDAnalysis 2.8.0."
)
warnings.warn(wmsg, DeprecationWarning)
key = "Boltzmann_constant"
return super().__getitem__(key)
#
# NOTE: Whenever a constant is added to the constants dict, you also
# MUST add an appropriate entry to
# test_units:TestConstants.constants_reference !
#: Values of physical constants are taken from `CODATA 2010 at NIST`_. The
#: thermochemical calorie is defined in the `ISO 80000-5:2007`_ standard and
#: is also listed in the `NIST Guide to SI: Appendix B.8: Factors for Units`_.
#:
#: .. _`CODATA 2010 at NIST`:
#: http://physics.nist.gov/cuu/Constants/
#: .. _`ISO 80000-5:2007`:
#: http://www.iso.org/iso/catalogue_detail?csnumber=31890
#: .. _`NIST Guide to SI: Appendix B.8: Factors for Units`:
#: http://physics.nist.gov/Pubs/SP811/appenB8.html#C
#:
#: .. versionadded:: 0.9.0
constants = DeprecatedKeyAccessDict(
{
"N_Avogadro": 6.02214129e23, # mol**-1
"elementary_charge": 1.602176565e-19, # As
"calorie": 4.184, # J
"Boltzmann_constant": 8.314462159e-3, # KJ (mol K)**-1
"electric_constant": 5.526350e-3, # As (Angstroms Volts)**-1
}
)
#: The basic unit of *length* in MDAnalysis is the Angstrom.
#: Conversion factors between the base unit and other lengthUnits *x* are
#: stored.
#: Conversions follow `L/x = L/Angstrom * lengthUnit_factor[x]`.
#: *x* can be *nm*/*nanometer* or *fm*.
lengthUnit_factor = {
"Angstrom": 1.0,
"A": 1.0,
"angstrom": 1.0,
"\u212b": 1.0, # Unicode and UTF-8 encoded symbol for angstroms
"nm": 1.0 / 10,
"nanometer": 1.0 / 10,
"pm": 1e2,
"picometer": 1e2,
"fm": 1e5,
"femtometer": 1e5,
}
#: water density values at T=298K, P=1atm :footcite:p:`Jorgensen1998`.
#: ======== =========
#: model g cm**-3
#: ======== =========
#: SPC 0.985(1)
#: TIP3P 1.002(1)
#: TIP4P 1.001(1)
#: exp 0.997
#: ======== =========
#:
#: and molar mass 18.016 g mol**-1.
water = {
"exp": 0.997,
"SPC": 0.985,
"TIP3P": 1.002,
"TIP4P": 1.001, # in g cm**-3
"MolarMass": 18.016, # in g mol**-1
}
#: The basic unit for *densities* is Angstrom**(-3), i.e.
#: the volume per molecule in A**3. Especially for water
#: it can be convenient to measure the density relative to bulk, and
#: hence a number of values are pre-stored in :data:`water`.
densityUnit_factor = {
"Angstrom^{-3}": 1 / 1.0,
"A^{-3}": 1 / 1.0,
"\u212b^{-3}": 1 / 1.0,
"nm^{-3}": 1 / 1e-3,
"nanometer^{-3}": 1 / 1e-3,
"Molar": 1 / (1e-27 * constants["N_Avogadro"]),
"SPC": 1
/ (1e-24 * constants["N_Avogadro"] * water["SPC"] / water["MolarMass"]),
"TIP3P": 1
/ (1e-24 * constants["N_Avogadro"] * water["TIP3P"] / water["MolarMass"]),
"TIP4P": 1
/ (1e-24 * constants["N_Avogadro"] * water["TIP4P"] / water["MolarMass"]),
"water": 1
/ (1e-24 * constants["N_Avogadro"] * water["exp"] / water["MolarMass"]),
}
#: For *time*, the basic unit is ps; in particular CHARMM's
#: 1 AKMA_ time unit = 4.888821E-14 sec is supported.
timeUnit_factor = {
"ps": 1.0,
"picosecond": 1.0, # 1/1.0
"fs": 1e3,
"femtosecond": 1e3, # 1/1e-3,
"ns": 1e-3,
"nanosecond": 1e-3, # 1/1e3,
"ms": 1e-9,
"millisecond": 1e-9, # 1/1e9,
"us": 1e-6,
"microsecond": 1e-6,
"\u03BCs": 1e-6, # 1/1e6,
"second": 1e-12,
"sec": 1e-12,
"s": 1e-12, # 1/1e12,
"AKMA": 1 / 4.888821e-2,
}
# getting the factor f: 1200ps * f = 1.2 ns ==> f = 1/1000 ns/ps
#: For *speed*, the basic unit is Angstrom/ps.
speedUnit_factor = {
"Angstrom/ps": 1.0,
"A/ps": 1.0,
"\u212b/ps": 1.0,
"Angstrom/picosecond": 1.0,
"angstrom/picosecond": 1.0, # 1
"Angstrom/fs": 1.0 * 1e-3,
"Angstrom/femtosecond": 1.0 * 1e-3,
"angstrom/femtosecond": 1.0 * 1e-3,
"angstrom/fs": 1.0 * 1e-3,
"A/fs": 1.0 * 1e-3,
"\u212b/fs": 1.0 * 1e-3,
"Angstrom/ns": 1.0 * 1e3,
"A/ns": 1.0 * 1e3,
"\u212b/ns": 1.0 * 1e3,
"Angstrom/nanosecond": 1.0 * 1e3,
"angstrom/nanosecond": 1.0 * 1e3,
"Angstrom/us": 1.0 * 1e6,
"angstrom/us": 1.0 * 1e6,
"A/us": 1.0 * 1e6,
"A/\u03BCs": 1.0 * 1e6,
"\u212b/\u03BCs": 1.0 * 1e6,
"Angstrom/microsecond": 1.0 * 1e6,
"angstrom/microsecond": 1.0 * 1e6,
"Angstrom/\u03BCs": 1.0 * 1e6,
"angstrom/\u03BCs": 1.0 * 1e6,
"Angstrom/ms": 1.0 * 1e9,
"Angstrom/millisecond": 1.0 * 1e9,
"angstrom/millisecond": 1.0 * 1e9,
"angstrom/ms": 1.0 * 1e9,
"A/ms": 1.0 * 1e9,
"\u212b/ms": 1.0 * 1e9,
"Angstrom/AKMA": 4.888821e-2,
"A/AKMA": 4.888821e-2,
"nm/ps": 0.1,
"nanometer/ps": 0.1,
"nanometer/picosecond": 0.1, # 1/10
"nm/ns": 0.1 / 1e-3,
"pm/ps": 1e2,
"m/s": 1e-10 / 1e-12,
}
# (TODO: build this combinatorically from lengthUnit and timeUnit)
#: *Energy* is measured in kJ/mol.
energyUnit_factor = {
"kJ/mol": 1.0,
"kcal/mol": 1 / constants["calorie"],
"J": 1e3 / constants["N_Avogadro"],
"eV": 1e3 / (constants["N_Avogadro"] * constants["elementary_charge"]),
}
#: For *force* the basic unit is kJ/(mol*Angstrom).
forceUnit_factor = {
"kJ/(mol*Angstrom)": 1.0,
"kJ/(mol*A)": 1.0,
"kJ/(mol*\u212b)": 1.0,
"kJ/(mol*nm)": 10.0,
"Newton": 1e13 / constants["N_Avogadro"],
"N": 1e13 / constants["N_Avogadro"],
"J/m": 1e13 / constants["N_Avogadro"],
"kcal/(mol*Angstrom)": 1 / constants["calorie"],
}
# (TODO: build this combinatorically from lengthUnit and energyUnit)
#: *Charge* is measured in multiples of the `electron charge`_ *e*, with the value
#: *elementary_charge* in :data:`constants`.
#: The `conversion factor to Amber charge units`_ is 18.2223.
#:
#: .. _`conversion factor to Amber charge units`:
#: https://ambermd.org/FileFormats.php#parm.dat
#:
#: .. versionchanged:: 0.9.0
#: Use CODATA 2010 value for *elementary charge*, which differs from the previously
#: used value *e* = 1.602176487 x 10**(-19) C by 7.8000000e-27 C.
chargeUnit_factor = {
"e": 1.0,
"Amber": 18.2223, # https://ambermd.org/FileFormats.php#parm.dat
"C": constants["elementary_charge"],
"As": constants["elementary_charge"],
}
#: :data:`conversion_factor` is used by :func:`get_conversion_factor`
#: NOTE: any observable with a unit (i.e. one with an entry in
#: the :attr:`unit` attribute) needs an entry in :data:`conversion_factor`
conversion_factor = {
"length": lengthUnit_factor,
"density": densityUnit_factor,
"time": timeUnit_factor,
"charge": chargeUnit_factor,
"speed": speedUnit_factor,
"force": forceUnit_factor,
"energy": energyUnit_factor,
}
#: Generated lookup table (dict): returns the type of unit for a known input unit.
#: Note: Any unit must be *unique* because this dict is used to guess the
#: unit type.
unit_types = {}
for utype, ufactor in conversion_factor.items():
for unit in ufactor.keys():
assert not unit in unit_types # see comment!
unit_types[unit] = utype
#: Lookup table for base units in MDAnalysis by unit type.
MDANALYSIS_BASE_UNITS = {
"length": "A",
"time": "ps",
"energy": "kJ/mol",
"charge": "e",
"force": "kJ/(mol*A)",
"speed": "A/ps",
}
def get_conversion_factor(unit_type, u1, u2):
"""generate the conversion factor u1 -> u2 by using the base unit as an intermediate
f[u1 -> u2] = factor[u2]/factor[u1]
Conversion of :math:`X` (in u1) to :math:`X'` (in u2):
:math:`X'` = conversion_factor * :math:`X`
"""
# x is in u1: from u1 to b: x' = x / factor[u1]
# from b to u2: x'' = x' * factor[u2]
# so f[u1,u2] = factor[u2]/factor[u1]
return conversion_factor[unit_type][u2] / conversion_factor[unit_type][u1]
def convert(x, u1, u2):
"""Convert value *x* in unit *u1* to new value in *u2*.
Returns
-------
float
Converted value.
Raises
------
ValueError
The units are not known or if one attempts to convert between
incompatible units.
"""
try:
ut1 = unit_types[u1]
except KeyError:
errmsg = (
f"unit '{u1}' not recognized.\n"
f"It must be one of {', '.join(unit_types)}."
)
raise ValueError(errmsg) from None
try:
ut2 = unit_types[u2]
except KeyError:
errmsg = (
f"unit '{u2}' not recognized.\n"
f"It must be one of {', '.join(unit_types)}."
)
raise ValueError(errmsg) from None
if ut1 != ut2:
raise ValueError(
"Cannot convert between unit types " "{0} --> {1}".format(u1, u2)
)
return x * get_conversion_factor(ut1, u1, u2)
|