File: units.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (463 lines) | stat: -rw-r--r-- 14,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding: utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

r"""
Constants and unit conversion --- :mod:`MDAnalysis.units`
===============================================================

The base units of MDAnalysis trajectories are the **Å** (**ångström**) for
**length** and **ps** (**pico second**) for **time**. By default, all positions
are in Å and all times are in ps, regardless of how the MD code stored
trajectory data. By default, MDAnalysis converts automatically to the
MDAnalysis units when reading trajectories and converts back when writing. This
makes it possible to write scripts that can be agnostic of the specifics of how
a particular MD code stores trajectory data. Other base units are listed in the
table on :ref:`table-baseunits`.

.. _table-baseunits:

.. Table:: Base units in MDAnalysis as encoded in :data:`MDANALYSIS_BASE_UNITS`

   =========== ============== ===============================================
   quantity    unit            SI units
   =========== ============== ===============================================
   length       Å              :math:`10^{-10}` m
   time         ps             :math:`10^{-12}` s
   energy       kJ/mol         :math:`1.66053892103219 \times 10^{-21}` J
   charge       :math:`e`      :math:`1.602176565 \times 10^{-19}` As
   force        kJ/(mol·Å)     :math:`1.66053892103219 \times 10^{-11}` J/m
   speed        Å/ps           :math:`100` m/s
   =========== ============== ===============================================

Implementation notes
--------------------

All conversions with :func:`convert` are carried out in a simple fashion: the
conversion factor :math:`f_{b,b'}` from the base unit :math:`b` to another unit
:math:`b'` is precomputed and stored (see :ref:`Data`). The numerical value of
a quantity in unit :math:`b` is :math:`X/b` (e.g. for :math:`X =
1.23\,\mathrm{ps}`, the numerical value is :math:`X/\mathrm{ps} =
1.23`). [#funits]_

The new numerical value :math:`X'/b'` of the quantity (in units of :math:`b'`)
is then

.. math::

   X'/b' = f_{b,b'} X/b

The function :func:`get_conversion_factor` returns the appropriate factor
:math:`f_{b,b'}`.

Conversion between different units is always carried out via the base unit as
an intermediate step::

    x is in u1: from u1 to b:  x'  = x  / factor[u1]
                from b  to u2: x'' = x' * factor[u2]
    so f[u1,u2] = factor[u2]/factor[u1]


Conversions
~~~~~~~~~~~

Examples for how to calculate some of the conversion factors that are
hard-coded in :mod:`~MDAnalysis.units` (see :ref:`Data`).

density:
  Base unit is :math:`\mathrm{Å}^{-3}`::

     n/x = n/A**3 * densityUnit_factor[x]

  Example for how to calculate the conversion factor
  :math:`f_{\mathrm{Å}^{-3},\mathrm{nm}^{-3}}` from :math:`\mathrm{Å}^{-3}` to
  :math:`\mathrm{nm}^{-3}`:

  .. math::

     f_{\mathrm{Å}^{-3},\mathrm{nm}^{-3}}
           = \frac{1\,\mathrm{nm}^{-3}}{1\,\mathrm{Å}^{-3}}
           = \frac{(10\,\mathrm{Å})^{-3}}{1\,\mathrm{Å}^{-3}}
           = 10^{-3}

concentration:
  Example for how to convert the conversion factor to Molar (mol/l)::

     factor = 1 A**-3 / (N_Avogadro * (10**-9 dm)**-3)

  relative to a density rho0 in :math:`g/cm^3`::

    M(H2O) = 18 g/mol   Molar mass of water

    factor = 1/(1e-24 * N_Avogadro / M(H2O))

  from :math:`\rho/\rho_0 = n/(N_A * M^{-1}) / \rho_0`

  where :math:`[n] = 1/Volume`, :math:`[\rho] = mass/Volume`


Note
----
In the future we might move towards using the Quantities_ package or
:mod:`scipy.constants`.


.. _Quantities: http://packages.python.org/quantities/

Functions
---------

.. autofunction:: get_conversion_factor
.. autofunction:: convert

.. _Data:

Data
----

.. autodata:: MDANALYSIS_BASE_UNITS
.. autodata:: constants
.. autodata:: lengthUnit_factor
.. autodata:: water
.. autodata:: densityUnit_factor
.. autodata:: timeUnit_factor
.. autodata:: speedUnit_factor
.. autodata:: forceUnit_factor
.. autodata:: chargeUnit_factor
.. autodata:: conversion_factor
.. autodata:: unit_types


References and footnotes
------------------------

.. footbibliography::

.. _AKMA: http://www.charmm.org/documentation/c37b1/usage.html#%20AKMA
.. _electron charge: http://physics.nist.gov/cgi-bin/cuu/Value?e
.. _`Avogadro's constant`: http://physics.nist.gov/cgi-bin/cuu/Value?na

.. Rubric:: Footnotes

.. [#funits] One can also consider the conversion factor to carry
   units :math:`b'/b`, in which case the conversion formula would
   become

   .. math::

      X' = f_{b,b'} X

"""

import warnings


# Remove in 2.8.0
class DeprecatedKeyAccessDict(dict):
    deprecated_kB = "Boltzman_constant"

    def __getitem__(self, key):
        if key == self.deprecated_kB:
            wmsg = (
                "Please use 'Boltzmann_constant' henceforth. The key "
                "'Boltzman_constant' was a typo and will be removed "
                "in MDAnalysis 2.8.0."
            )
            warnings.warn(wmsg, DeprecationWarning)
            key = "Boltzmann_constant"
        return super().__getitem__(key)


#
# NOTE: Whenever a constant is added to the constants dict, you also
#       MUST add an appropriate entry to
#       test_units:TestConstants.constants_reference !

#: Values of physical constants are taken from `CODATA 2010 at NIST`_. The
#: thermochemical calorie is defined in the `ISO 80000-5:2007`_ standard and
#: is also listed in the `NIST Guide to SI: Appendix B.8: Factors for Units`_.
#:
#: .. _`CODATA 2010 at NIST`:
#:    http://physics.nist.gov/cuu/Constants/
#: .. _`ISO 80000-5:2007`:
#:    http://www.iso.org/iso/catalogue_detail?csnumber=31890
#: .. _`NIST Guide to SI: Appendix B.8: Factors for Units`:
#:    http://physics.nist.gov/Pubs/SP811/appenB8.html#C
#:
#: .. versionadded:: 0.9.0
constants = DeprecatedKeyAccessDict(
    {
        "N_Avogadro": 6.02214129e23,  # mol**-1
        "elementary_charge": 1.602176565e-19,  # As
        "calorie": 4.184,  # J
        "Boltzmann_constant": 8.314462159e-3,  # KJ (mol K)**-1
        "electric_constant": 5.526350e-3,  # As (Angstroms Volts)**-1
    }
)

#: The basic unit of *length* in MDAnalysis is the Angstrom.
#: Conversion factors between the base unit and other lengthUnits *x* are
#: stored.
#: Conversions follow `L/x = L/Angstrom * lengthUnit_factor[x]`.
#: *x* can be *nm*/*nanometer* or *fm*.
lengthUnit_factor = {
    "Angstrom": 1.0,
    "A": 1.0,
    "angstrom": 1.0,
    "\u212b": 1.0,  # Unicode and UTF-8 encoded symbol for angstroms
    "nm": 1.0 / 10,
    "nanometer": 1.0 / 10,
    "pm": 1e2,
    "picometer": 1e2,
    "fm": 1e5,
    "femtometer": 1e5,
}


#: water density values at T=298K, P=1atm :footcite:p:`Jorgensen1998`.
#:  ======== =========
#:  model    g cm**-3
#:  ======== =========
#:    SPC     0.985(1)
#:    TIP3P   1.002(1)
#:    TIP4P   1.001(1)
#:    exp     0.997
#:  ======== =========
#:
#: and molar mass 18.016 g mol**-1.
water = {
    "exp": 0.997,
    "SPC": 0.985,
    "TIP3P": 1.002,
    "TIP4P": 1.001,  # in g cm**-3
    "MolarMass": 18.016,  # in g mol**-1
}

#: The basic unit for *densities* is Angstrom**(-3), i.e.
#: the volume per molecule in A**3. Especially for water
#: it can be convenient to measure the density relative to bulk, and
#: hence a number of values are pre-stored in :data:`water`.
densityUnit_factor = {
    "Angstrom^{-3}": 1 / 1.0,
    "A^{-3}": 1 / 1.0,
    "\u212b^{-3}": 1 / 1.0,
    "nm^{-3}": 1 / 1e-3,
    "nanometer^{-3}": 1 / 1e-3,
    "Molar": 1 / (1e-27 * constants["N_Avogadro"]),
    "SPC": 1
    / (1e-24 * constants["N_Avogadro"] * water["SPC"] / water["MolarMass"]),
    "TIP3P": 1
    / (1e-24 * constants["N_Avogadro"] * water["TIP3P"] / water["MolarMass"]),
    "TIP4P": 1
    / (1e-24 * constants["N_Avogadro"] * water["TIP4P"] / water["MolarMass"]),
    "water": 1
    / (1e-24 * constants["N_Avogadro"] * water["exp"] / water["MolarMass"]),
}


#: For *time*, the basic unit is ps; in particular CHARMM's
#: 1 AKMA_ time unit = 4.888821E-14 sec is supported.
timeUnit_factor = {
    "ps": 1.0,
    "picosecond": 1.0,  # 1/1.0
    "fs": 1e3,
    "femtosecond": 1e3,  # 1/1e-3,
    "ns": 1e-3,
    "nanosecond": 1e-3,  # 1/1e3,
    "ms": 1e-9,
    "millisecond": 1e-9,  # 1/1e9,
    "us": 1e-6,
    "microsecond": 1e-6,
    "\u03BCs": 1e-6,  # 1/1e6,
    "second": 1e-12,
    "sec": 1e-12,
    "s": 1e-12,  # 1/1e12,
    "AKMA": 1 / 4.888821e-2,
}
# getting the factor f:  1200ps * f = 1.2 ns  ==> f = 1/1000 ns/ps

#: For *speed*, the basic unit is Angstrom/ps.
speedUnit_factor = {
    "Angstrom/ps": 1.0,
    "A/ps": 1.0,
    "\u212b/ps": 1.0,
    "Angstrom/picosecond": 1.0,
    "angstrom/picosecond": 1.0,  # 1
    "Angstrom/fs": 1.0 * 1e-3,
    "Angstrom/femtosecond": 1.0 * 1e-3,
    "angstrom/femtosecond": 1.0 * 1e-3,
    "angstrom/fs": 1.0 * 1e-3,
    "A/fs": 1.0 * 1e-3,
    "\u212b/fs": 1.0 * 1e-3,
    "Angstrom/ns": 1.0 * 1e3,
    "A/ns": 1.0 * 1e3,
    "\u212b/ns": 1.0 * 1e3,
    "Angstrom/nanosecond": 1.0 * 1e3,
    "angstrom/nanosecond": 1.0 * 1e3,
    "Angstrom/us": 1.0 * 1e6,
    "angstrom/us": 1.0 * 1e6,
    "A/us": 1.0 * 1e6,
    "A/\u03BCs": 1.0 * 1e6,
    "\u212b/\u03BCs": 1.0 * 1e6,
    "Angstrom/microsecond": 1.0 * 1e6,
    "angstrom/microsecond": 1.0 * 1e6,
    "Angstrom/\u03BCs": 1.0 * 1e6,
    "angstrom/\u03BCs": 1.0 * 1e6,
    "Angstrom/ms": 1.0 * 1e9,
    "Angstrom/millisecond": 1.0 * 1e9,
    "angstrom/millisecond": 1.0 * 1e9,
    "angstrom/ms": 1.0 * 1e9,
    "A/ms": 1.0 * 1e9,
    "\u212b/ms": 1.0 * 1e9,
    "Angstrom/AKMA": 4.888821e-2,
    "A/AKMA": 4.888821e-2,
    "nm/ps": 0.1,
    "nanometer/ps": 0.1,
    "nanometer/picosecond": 0.1,  # 1/10
    "nm/ns": 0.1 / 1e-3,
    "pm/ps": 1e2,
    "m/s": 1e-10 / 1e-12,
}
# (TODO: build this combinatorically from lengthUnit and timeUnit)

#: *Energy* is measured in kJ/mol.
energyUnit_factor = {
    "kJ/mol": 1.0,
    "kcal/mol": 1 / constants["calorie"],
    "J": 1e3 / constants["N_Avogadro"],
    "eV": 1e3 / (constants["N_Avogadro"] * constants["elementary_charge"]),
}

#: For *force* the basic unit is kJ/(mol*Angstrom).
forceUnit_factor = {
    "kJ/(mol*Angstrom)": 1.0,
    "kJ/(mol*A)": 1.0,
    "kJ/(mol*\u212b)": 1.0,
    "kJ/(mol*nm)": 10.0,
    "Newton": 1e13 / constants["N_Avogadro"],
    "N": 1e13 / constants["N_Avogadro"],
    "J/m": 1e13 / constants["N_Avogadro"],
    "kcal/(mol*Angstrom)": 1 / constants["calorie"],
}
# (TODO: build this combinatorically from lengthUnit and energyUnit)

#: *Charge* is measured in multiples of the `electron charge`_ *e*, with the value
#: *elementary_charge* in :data:`constants`.
#: The `conversion factor to Amber charge units`_ is 18.2223.
#:
#: .. _`conversion factor to Amber charge units`:
#:    https://ambermd.org/FileFormats.php#parm.dat
#:
#: .. versionchanged:: 0.9.0
#:    Use CODATA 2010 value for *elementary charge*, which differs from the previously
#:    used value *e* =  1.602176487 x 10**(-19) C by 7.8000000e-27 C.
chargeUnit_factor = {
    "e": 1.0,
    "Amber": 18.2223,  # https://ambermd.org/FileFormats.php#parm.dat
    "C": constants["elementary_charge"],
    "As": constants["elementary_charge"],
}

#: :data:`conversion_factor` is used by :func:`get_conversion_factor`
#: NOTE: any observable with a unit (i.e. one with an entry in
#: the :attr:`unit` attribute) needs an entry in :data:`conversion_factor`
conversion_factor = {
    "length": lengthUnit_factor,
    "density": densityUnit_factor,
    "time": timeUnit_factor,
    "charge": chargeUnit_factor,
    "speed": speedUnit_factor,
    "force": forceUnit_factor,
    "energy": energyUnit_factor,
}

#: Generated lookup table (dict): returns the type of unit for a known input unit.
#: Note: Any unit must be *unique* because this dict is used to guess the
#: unit type.
unit_types = {}
for utype, ufactor in conversion_factor.items():
    for unit in ufactor.keys():
        assert not unit in unit_types  # see comment!
        unit_types[unit] = utype

#: Lookup table for base units in MDAnalysis by unit type.
MDANALYSIS_BASE_UNITS = {
    "length": "A",
    "time": "ps",
    "energy": "kJ/mol",
    "charge": "e",
    "force": "kJ/(mol*A)",
    "speed": "A/ps",
}


def get_conversion_factor(unit_type, u1, u2):
    """generate the conversion factor u1 -> u2 by using the base unit as an intermediate

    f[u1 -> u2] = factor[u2]/factor[u1]

    Conversion of :math:`X` (in u1) to :math:`X'` (in u2):

    :math:`X'` = conversion_factor * :math:`X`
    """
    # x is in u1: from u1 to b:  x'  = x  / factor[u1]
    #             from b  to u2: x'' = x' * factor[u2]
    # so f[u1,u2] = factor[u2]/factor[u1]
    return conversion_factor[unit_type][u2] / conversion_factor[unit_type][u1]


def convert(x, u1, u2):
    """Convert value *x* in unit *u1* to new value in *u2*.

    Returns
    -------
    float
        Converted value.

    Raises
    ------
    ValueError
        The units are not known or if one attempts to convert between
        incompatible units.
    """
    try:
        ut1 = unit_types[u1]
    except KeyError:
        errmsg = (
            f"unit '{u1}' not recognized.\n"
            f"It must be one of {', '.join(unit_types)}."
        )
        raise ValueError(errmsg) from None

    try:
        ut2 = unit_types[u2]
    except KeyError:
        errmsg = (
            f"unit '{u2}' not recognized.\n"
            f"It must be one of {', '.join(unit_types)}."
        )
        raise ValueError(errmsg) from None
    if ut1 != ut2:
        raise ValueError(
            "Cannot convert between unit types " "{0} --> {1}".format(u1, u2)
        )
    return x * get_conversion_factor(ut1, u1, u2)