1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""Streamplots (3D) --- :mod:`MDAnalysis.visualization.streamlines_3D`
===================================================================
:Authors: Tyler Reddy and Matthieu Chavent
:Year: 2014
:Copyright: Lesser GNU Public License v2.1+
The :func:`generate_streamlines_3d` function can generate a 3D flow field from
a MD trajectory, for instance, lipid molecules in a virus capsid. It can make
use of multiple cores to perform the analyis in parallel (using
:mod:`multiprocessing`).
.. rubric: References
.. footbibliography::
See Also
--------
MDAnalysis.visualization.streamlines : streamplots in 2D
.. autofunction:: generate_streamlines_3d
"""
import multiprocessing
import numpy as np
import numpy.testing
import scipy
import scipy.spatial.distance
import MDAnalysis
def determine_container_limits(
topology_file_path, trajectory_file_path, buffer_value
):
"""Calculate the extent of the atom coordinates + buffer.
A function for the parent process which should take the input trajectory
and calculate the limits of the container for the system and return these
limits.
Parameters
----------
topology_file_path : str
topology file name
trajectory_file_path : str
trajectory file name
buffer_value : float
buffer value (padding) in +/- {x, y, z}
"""
universe_object = MDAnalysis.Universe(
topology_file_path, trajectory_file_path
)
all_atom_selection = universe_object.select_atoms(
"all"
) # select all particles
all_atom_coordinate_array = all_atom_selection.positions
x_min, x_max, y_min, y_max, z_min, z_max = [
all_atom_coordinate_array[..., 0].min(),
all_atom_coordinate_array[..., 0].max(),
all_atom_coordinate_array[..., 1].min(),
all_atom_coordinate_array[..., 1].max(),
all_atom_coordinate_array[..., 2].min(),
all_atom_coordinate_array[..., 2].max(),
]
tuple_of_limits = (
x_min - buffer_value,
x_max + buffer_value,
y_min - buffer_value,
y_max + buffer_value,
z_min - buffer_value,
z_max + buffer_value,
) # using buffer_value to catch particles near edges
return tuple_of_limits
def produce_grid(tuple_of_limits, grid_spacing):
"""Produce a 3D grid for the simulation system.
The partitioning is based on the tuple of Cartesian Coordinate limits
calculated in an earlier step.
Parameters
----------
tuple_of_limits : tuple
``x_min, x_max, y_min, y_max, z_min, z_max``
grid_spacing : float
grid size in all directions in ångström
Returns
-------
grid : array
``numpy.mgrid[x_min:x_max:grid_spacing, y_min:y_max:grid_spacing, z_min:z_max:grid_spacing]``
"""
x_min, x_max, y_min, y_max, z_min, z_max = tuple_of_limits
grid = np.mgrid[
x_min:x_max:grid_spacing,
y_min:y_max:grid_spacing,
z_min:z_max:grid_spacing,
]
return grid
def split_grid(grid, num_cores):
"""Split the grid into blocks of vertices.
Take the overall `grid` for the system and split it into lists of cube
vertices that can be distributed to each core.
Parameters
----------
grid : numpy.array
3D array
num_cores : int
number of partitions to generate
Returns
-------
list_dictionaries_for_cores : list of dict
total_cubes : int
num_sheets : int
delta_array_shape : tuple
"""
# unpack the x,y,z mgrid arrays
x, y, z = grid
num_z_values = z.shape[-1]
num_sheets = z.shape[0]
delta_array_shape = tuple(
[n - 1 for n in x.shape]
) # the final target shape for return delta arrays is n-1 in each dimension
ordered_list_per_sheet_x_values = []
for (
x_sheet
) in (
x
): # each x_sheet should have shape (25,23) and the same x value in each element
array_all_x_values_current_sheet = x_sheet.flatten()
ordered_list_per_sheet_x_values.append(
array_all_x_values_current_sheet
)
ordered_list_per_sheet_y_values = []
for y_columns in y:
array_all_y_values_current_sheet = y_columns.flatten()
ordered_list_per_sheet_y_values.append(
array_all_y_values_current_sheet
)
ordered_list_per_sheet_z_values = []
for z_slices in z:
array_all_z_values_current_sheet = z_slices.flatten()
ordered_list_per_sheet_z_values.append(
array_all_z_values_current_sheet
)
ordered_list_cartesian_coordinates_per_sheet = []
for x_sheet_coords, y_sheet_coords, z_sheet_coords in zip(
ordered_list_per_sheet_x_values,
ordered_list_per_sheet_y_values,
ordered_list_per_sheet_z_values,
):
ordered_list_cartesian_coordinates_per_sheet.append(
list(zip(x_sheet_coords, y_sheet_coords, z_sheet_coords))
)
array_ordered_cartesian_coords_per_sheet = np.array(
ordered_list_cartesian_coordinates_per_sheet
)
# now I'm going to want to build cubes in an ordered fashion, and in such a way that I can track the index /
# centroid of each cube for domain decomposition / reconstruction and mayavi mlab.flow() input
# cubes will be formed from N - 1 base sheets combined with subsequent sheets
current_base_sheet = 0
dictionary_cubes_centroids_indices = {}
cube_counter = 0
while current_base_sheet < num_sheets - 1:
current_base_sheet_array = array_ordered_cartesian_coords_per_sheet[
current_base_sheet
]
current_top_sheet_array = array_ordered_cartesian_coords_per_sheet[
current_base_sheet + 1
] # the points of the sheet 'to the right' in the grid
current_index = 0
while current_index < current_base_sheet_array.shape[0] - num_z_values:
# iterate through all the indices in each of the sheet arrays (careful to avoid extra
# points not needed for cubes)
column_z_level = (
0 # start at the bottom of a given 4-point column and work up
)
while column_z_level < num_z_values - 1:
current_list_cube_vertices = []
first_two_vertices_base_sheet = current_base_sheet_array[
current_index : current_index + 2, ...
].tolist()
first_two_vertices_top_sheet = current_top_sheet_array[
current_index : current_index + 2, ...
].tolist()
next_two_vertices_base_sheet = current_base_sheet_array[
current_index
+ num_z_values : 2
+ num_z_values
+ current_index,
...,
].tolist()
next_two_vertices_top_sheet = current_top_sheet_array[
current_index
+ num_z_values : 2
+ num_z_values
+ current_index,
...,
].tolist()
for vertex_set in [
first_two_vertices_base_sheet,
first_two_vertices_top_sheet,
next_two_vertices_base_sheet,
next_two_vertices_top_sheet,
]:
current_list_cube_vertices.extend(vertex_set)
vertex_array = np.array(current_list_cube_vertices)
assert vertex_array.shape == (
8,
3,
), "vertex_array has incorrect shape"
cube_centroid = np.average(
np.array(current_list_cube_vertices), axis=0
)
dictionary_cubes_centroids_indices[cube_counter] = {
"centroid": cube_centroid,
"vertex_list": current_list_cube_vertices,
}
cube_counter += 1
current_index += 1
column_z_level += 1
if (
column_z_level == num_z_values - 1
): # the loop will break but I should also increment the
# current_index
current_index += 1
current_base_sheet += 1
total_cubes = len(dictionary_cubes_centroids_indices)
# produce an array of pseudo cube indices (actually the dictionary keys which are cube numbers in string format):
pseudo_cube_indices = np.arange(0, total_cubes)
sublist_of_cube_indices_per_core = np.array_split(
pseudo_cube_indices, num_cores
)
# now, the split of pseudoindices seems to work well, and the above sublist_of_cube_indices_per_core is a list of
# arrays of cube numbers / keys in the original dictionary
# now I think I'll try to produce a list of dictionaries that each contain their assigned cubes based on the above
# per core split
list_dictionaries_for_cores = []
subdictionary_counter = 0
for array_cube_indices in sublist_of_cube_indices_per_core:
current_core_dictionary = {}
items_to_pop = len(array_cube_indices)
items_popped = 0
while items_popped < items_to_pop:
key, value = dictionary_cubes_centroids_indices.popitem()
current_core_dictionary.update({key: value})
items_popped += 1
list_dictionaries_for_cores.append(current_core_dictionary)
subdictionary_counter += 1
return (
list_dictionaries_for_cores,
total_cubes,
num_sheets,
delta_array_shape,
)
def per_core_work(
start_frame_coord_array,
end_frame_coord_array,
dictionary_cube_data_this_core,
MDA_selection,
start_frame,
end_frame,
):
"""Run the analysis on one core.
The code to perform on a given core given the dictionary of cube data.
"""
list_previous_frame_centroids = []
list_previous_frame_indices = []
# define some utility functions for trajectory iteration:
def point_in_cube(
array_point_coordinates, list_cube_vertices, cube_centroid
):
"""Determine if an array of coordinates are within a cube."""
# the simulation particle point can't be more than half the cube side length away from the cube centroid in
# any given dimension:
array_cube_vertices = np.array(list_cube_vertices)
cube_half_side_length = (
scipy.spatial.distance.pdist(
array_cube_vertices, "euclidean"
).min()
/ 2.0
)
array_cube_vertex_distances_from_centroid = (
scipy.spatial.distance.cdist(
array_cube_vertices, cube_centroid[np.newaxis, :]
)
)
np.testing.assert_allclose(
array_cube_vertex_distances_from_centroid.min(),
array_cube_vertex_distances_from_centroid.max(),
rtol=0,
atol=1.5e-4,
err_msg="not all cube vertex to centroid distances are the same, "
"so not a true cube",
)
absolute_delta_coords = np.absolute(
np.subtract(array_point_coordinates, cube_centroid)
)
absolute_delta_x_coords = absolute_delta_coords[..., 0]
indices_delta_x_acceptable = np.where(
absolute_delta_x_coords <= cube_half_side_length
)
absolute_delta_y_coords = absolute_delta_coords[..., 1]
indices_delta_y_acceptable = np.where(
absolute_delta_y_coords <= cube_half_side_length
)
absolute_delta_z_coords = absolute_delta_coords[..., 2]
indices_delta_z_acceptable = np.where(
absolute_delta_z_coords <= cube_half_side_length
)
intersection_xy_acceptable_arrays = np.intersect1d(
indices_delta_x_acceptable[0], indices_delta_y_acceptable[0]
)
overall_indices_points_in_current_cube = np.intersect1d(
intersection_xy_acceptable_arrays, indices_delta_z_acceptable[0]
)
return overall_indices_points_in_current_cube
def update_dictionary_point_in_cube_start_frame(
array_simulation_particle_coordinates, dictionary_cube_data_this_core
):
"""Basically update the cube dictionary objects assigned to this core to contain a new key/value pair
corresponding to the indices of the relevant particles that fall within a given cube. Also, for a given cube,
store a key/value pair for the centroid of the particles that fall within the cube.
"""
cube_counter = 0
for key, cube in dictionary_cube_data_this_core.items():
index_list_in_cube = point_in_cube(
array_simulation_particle_coordinates,
cube["vertex_list"],
cube["centroid"],
)
cube["start_frame_index_list_in_cube"] = index_list_in_cube
if (
len(index_list_in_cube) > 0
): # if there's at least one particle in this cube
centroid_particles_in_cube = np.average(
array_simulation_particle_coordinates[index_list_in_cube],
axis=0,
)
cube["centroid_of_particles_first_frame"] = (
centroid_particles_in_cube
)
else: # empty cube
cube["centroid_of_particles_first_frame"] = None
cube_counter += 1
def update_dictionary_end_frame(
array_simulation_particle_coordinates, dictionary_cube_data_this_core
):
"""Update the cube dictionary objects again as appropriate for the second and final frame."""
cube_counter = 0
for key, cube in dictionary_cube_data_this_core.items():
# if there were no particles in the cube in the first frame, then set dx,dy,dz each to 0
if cube["centroid_of_particles_first_frame"] is None:
cube["dx"] = 0
cube["dy"] = 0
cube["dz"] = 0
else: # there was at least one particle in the starting cube so we can get dx,dy,dz centroid values
new_coordinate_array_for_particles_starting_in_this_cube = (
array_simulation_particle_coordinates[
cube["start_frame_index_list_in_cube"]
]
)
new_centroid_for_particles_starting_in_this_cube = np.average(
new_coordinate_array_for_particles_starting_in_this_cube,
axis=0,
)
cube["centroid_of_paticles_final_frame"] = (
new_centroid_for_particles_starting_in_this_cube
)
delta_centroid_array_this_cube = (
new_centroid_for_particles_starting_in_this_cube
- cube["centroid_of_particles_first_frame"]
)
cube["dx"] = delta_centroid_array_this_cube[0]
cube["dy"] = delta_centroid_array_this_cube[1]
cube["dz"] = delta_centroid_array_this_cube[2]
cube_counter += 1
# now that the parent process is dealing with the universe object & grabbing required coordinates, each child
# process only needs to take the coordinate arrays & perform the operations with its assigned cubes (no more file
# opening and trajectory iteration on each core--which I'm hoping will substantially reduce the physical memory
# footprint of my 3D streamplot code)
update_dictionary_point_in_cube_start_frame(
start_frame_coord_array, dictionary_cube_data_this_core
)
update_dictionary_end_frame(
end_frame_coord_array, dictionary_cube_data_this_core
)
return dictionary_cube_data_this_core
def produce_coordinate_arrays_single_process(
topology_file_path,
trajectory_file_path,
MDA_selection,
start_frame,
end_frame,
):
"""Generate coordinate arrays.
To reduce memory footprint produce only a single MDA selection and get
desired coordinate arrays; can later send these coordinate arrays to all
child processes rather than having each child process open a trajectory and
waste memory.
"""
universe_object = MDAnalysis.Universe(
topology_file_path, trajectory_file_path
)
relevant_particles = universe_object.select_atoms(MDA_selection)
# pull out coordinate arrays from desired frames:
for ts in universe_object.trajectory:
if ts.frame > end_frame:
break # stop here
if ts.frame == start_frame:
start_frame_relevant_particle_coordinate_array_xyz = (
relevant_particles.positions
)
elif ts.frame == end_frame:
end_frame_relevant_particle_coordinate_array_xyz = (
relevant_particles.positions
)
else:
continue
return (
start_frame_relevant_particle_coordinate_array_xyz,
end_frame_relevant_particle_coordinate_array_xyz,
)
def generate_streamlines_3d(
topology_file_path,
trajectory_file_path,
grid_spacing,
MDA_selection,
start_frame,
end_frame,
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
maximum_delta_magnitude=2.0,
num_cores="maximum",
):
r"""Produce the x, y and z components of a 3D streamplot data set.
Parameters
----------
topology_file_path : str
Absolute path to the topology file
trajectory_file_path : str
Absolute path to the trajectory file. It will normally be desirable
to filter the trajectory with a tool such as GROMACS
:program:`g_filter` (see :footcite:p:`Chavent2014`)
grid_spacing : float
The spacing between grid lines (angstroms)
MDA_selection : str
MDAnalysis selection string
start_frame : int
First frame number to parse
end_frame : int
Last frame number to parse
xmin : float
Minimum coordinate boundary for x-axis (angstroms)
xmax : float
Maximum coordinate boundary for x-axis (angstroms)
ymin : float
Minimum coordinate boundary for y-axis (angstroms)
ymax : float
Maximum coordinate boundary for y-axis (angstroms)
maximum_delta_magnitude : float
Absolute value of the largest displacement tolerated for the
centroid of a group of particles ( angstroms). Values above this
displacement will not count in the streamplot (treated as
excessively large displacements crossing the periodic boundary)
num_cores : int or 'maximum' (optional)
The number of cores to use. (Default 'maximum' uses all available
cores)
Returns
-------
dx_array : array of floats
An array object containing the displacements in the x direction
dy_array : array of floats
An array object containing the displacements in the y direction
dz_array : array of floats
An array object containing the displacements in the z direction
Examples
--------
Generate 3D streamlines and visualize in `mayavi`_::
import numpy as np
import MDAnalysis
import MDAnalysis.visualization.streamlines_3D
import mayavi, mayavi.mlab
# assign coordinate system limits and grid spacing:
x_lower,x_upper = -8.73, 1225.96
y_lower,y_upper = -12.58, 1224.34
z_lower,z_upper = -300, 300
grid_spacing_value = 20
x1, y1, z1 = MDAnalysis.visualization.streamlines_3D.generate_streamlines_3d(
'testing.gro', 'testing_filtered.xtc',
xmin=x_lower, xmax=x_upper,
ymin=y_lower, ymax=y_upper,
zmin=z_lower, zmax=z_upper,
grid_spacing=grid_spacing_value, MDA_selection = 'name PO4',
start_frame=2, end_frame=3, num_cores='maximum')
x, y, z = np.mgrid[x_lower:x_upper:x1.shape[0]*1j,
y_lower:y_upper:y1.shape[1]*1j,
z_lower:z_upper:z1.shape[2]*1j]
# plot with mayavi:
fig = mayavi.mlab.figure(bgcolor=(1.0, 1.0, 1.0), size=(800, 800), fgcolor=(0, 0, 0))
for z_value in np.arange(z_lower, z_upper, grid_spacing_value):
st = mayavi.mlab.flow(x, y, z, x1, y1, z1, line_width=1,
seedtype='plane', integration_direction='both')
st.streamline_type = 'tube'
st.tube_filter.radius = 2
st.seed.widget.origin = np.array([ x_lower, y_upper, z_value])
st.seed.widget.point1 = np.array([ x_upper, y_upper, z_value])
st.seed.widget.point2 = np.array([ x_lower, y_lower, z_value])
st.seed.widget.resolution = int(x1.shape[0])
st.seed.widget.enabled = False
mayavi.mlab.axes(extent = [0, 1200, 0, 1200, -300, 300])
fig.scene.z_plus_view()
mayavi.mlab.savefig('test_streamplot_3D.png')
# more compelling examples can be produced for vesicles and other spherical systems
.. image:: test_streamplot_3D.png
See Also
--------
MDAnalysis.visualization.streamlines.generate_streamlines
.. _mayavi: http://docs.enthought.com/mayavi/mayavi/
"""
# work out the number of cores to use:
if num_cores == "maximum":
num_cores = multiprocessing.cpu_count() # use all available cores
else:
num_cores = num_cores # use the value specified by the user
# assert isinstance(num_cores,(int,long)), "The number of specified cores must (of course) be an integer."
np.seterr(all="warn", over="raise")
parent_cube_dictionary = {} # collect all data from child processes here
def log_result_to_parent(process_dict):
parent_cube_dictionary.update(process_dict)
# step 1: produce tuple of cartesian coordinate limits for the first frame
# tuple_of_limits = determine_container_limits(topology_file_path = topology_file_path,trajectory_file_path =
# trajectory_file_path,buffer_value=buffer_value)
tuple_of_limits = (xmin, xmax, ymin, ymax, zmin, zmax)
# step 2: produce a suitable grid (will assume that grid size / container size does not vary during simulation--or
# at least not beyond the buffer limit, such that this grid can be used for all subsequent frames)
grid = produce_grid(
tuple_of_limits=tuple_of_limits, grid_spacing=grid_spacing
)
# step 3: split the grid into a dictionary of cube information that can be sent to each core for processing:
list_dictionaries_for_cores, total_cubes, num_sheets, delta_array_shape = (
split_grid(grid=grid, num_cores=num_cores)
)
# step 3b: produce required coordinate arrays on a single core to avoid making a universe object on each core:
start_frame_coord_array, end_frame_coord_array = (
produce_coordinate_arrays_single_process(
topology_file_path,
trajectory_file_path,
MDA_selection,
start_frame,
end_frame,
)
)
# step 4: per process work using the above grid data split
pool = multiprocessing.Pool(num_cores)
for sub_dictionary_of_cube_data in list_dictionaries_for_cores:
pool.apply_async(
per_core_work,
args=(
start_frame_coord_array,
end_frame_coord_array,
sub_dictionary_of_cube_data,
MDA_selection,
start_frame,
end_frame,
),
callback=log_result_to_parent,
)
pool.close()
pool.join()
# so, at this stage the parent process now has a single dictionary with all the cube objects updated from all
# available cores
# the 3D streamplot (i.e, mayavi flow() function) will require separate 3D np arrays for dx,dy,dz
# the shape of each 3D array will unfortunately have to match the mgrid data structure (bit of a pain): (
# num_sheets - 1, num_sheets - 1, cubes_per_column)
cubes_per_sheet = int(float(total_cubes) / float(num_sheets - 1))
# produce dummy zero arrays for dx,dy,dz of the appropriate shape:
dx_array = np.zeros(delta_array_shape)
dy_array = np.zeros(delta_array_shape)
dz_array = np.zeros(delta_array_shape)
# now use the parent cube dictionary to correctly substitute in dx,dy,dz values
current_sheet = 0 # which is also the current row
y_index_current_sheet = 0 # sub row
z_index_current_column = 0 # column
total_cubes_current_sheet = 0
for cube_number in range(0, total_cubes):
dx_array[
current_sheet, y_index_current_sheet, z_index_current_column
] = parent_cube_dictionary[cube_number]["dx"]
dy_array[
current_sheet, y_index_current_sheet, z_index_current_column
] = parent_cube_dictionary[cube_number]["dy"]
dz_array[
current_sheet, y_index_current_sheet, z_index_current_column
] = parent_cube_dictionary[cube_number]["dz"]
z_index_current_column += 1
total_cubes_current_sheet += 1
if z_index_current_column == delta_array_shape[2]:
# done building current y-column so iterate y value and reset z
z_index_current_column = 0
y_index_current_sheet += 1
if (
y_index_current_sheet == delta_array_shape[1]
): # current sheet is complete
current_sheet += 1
y_index_current_sheet = 0 # restart for new sheet
z_index_current_column = 0
total_cubes_current_sheet = 0
# now set velocity component values greater than a certain cutoff to 0,
# because they tend to reflect spurious values (i.e., PBC jumping)
dx_array[abs(dx_array) >= maximum_delta_magnitude] = 1.0
dy_array[abs(dy_array) >= maximum_delta_magnitude] = 1.0
dz_array[abs(dz_array) >= maximum_delta_magnitude] = 1.0
return (dx_array, dy_array, dz_array)
|