File: streamlines_3D.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (685 lines) | stat: -rw-r--r-- 27,342 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

"""Streamplots (3D) --- :mod:`MDAnalysis.visualization.streamlines_3D`
===================================================================

:Authors: Tyler Reddy and Matthieu Chavent
:Year: 2014
:Copyright: Lesser GNU Public License v2.1+


The :func:`generate_streamlines_3d` function can generate a 3D flow field from
a MD trajectory, for instance, lipid molecules in a virus capsid. It can make
use of multiple cores to perform the analyis in parallel (using
:mod:`multiprocessing`).

.. rubric: References

.. footbibliography::

See Also
--------
MDAnalysis.visualization.streamlines : streamplots in 2D


.. autofunction:: generate_streamlines_3d

"""
import multiprocessing

import numpy as np
import numpy.testing
import scipy
import scipy.spatial.distance

import MDAnalysis


def determine_container_limits(
    topology_file_path, trajectory_file_path, buffer_value
):
    """Calculate the extent of the atom coordinates + buffer.

    A function for the parent process which should take the input trajectory
    and calculate the limits of the container for the system and return these
    limits.

    Parameters
    ----------
    topology_file_path : str
        topology file name
    trajectory_file_path : str
        trajectory file name
    buffer_value : float
        buffer value (padding) in +/- {x, y, z}
    """
    universe_object = MDAnalysis.Universe(
        topology_file_path, trajectory_file_path
    )
    all_atom_selection = universe_object.select_atoms(
        "all"
    )  # select all particles
    all_atom_coordinate_array = all_atom_selection.positions
    x_min, x_max, y_min, y_max, z_min, z_max = [
        all_atom_coordinate_array[..., 0].min(),
        all_atom_coordinate_array[..., 0].max(),
        all_atom_coordinate_array[..., 1].min(),
        all_atom_coordinate_array[..., 1].max(),
        all_atom_coordinate_array[..., 2].min(),
        all_atom_coordinate_array[..., 2].max(),
    ]
    tuple_of_limits = (
        x_min - buffer_value,
        x_max + buffer_value,
        y_min - buffer_value,
        y_max + buffer_value,
        z_min - buffer_value,
        z_max + buffer_value,
    )  # using buffer_value to catch particles near edges
    return tuple_of_limits


def produce_grid(tuple_of_limits, grid_spacing):
    """Produce a 3D grid for the simulation system.

    The partitioning is based on the tuple of Cartesian Coordinate limits
    calculated in an earlier step.

    Parameters
    ----------
    tuple_of_limits : tuple
        ``x_min, x_max, y_min, y_max, z_min, z_max``
    grid_spacing : float
        grid size in all directions in ångström

    Returns
    -------
    grid : array
        ``numpy.mgrid[x_min:x_max:grid_spacing, y_min:y_max:grid_spacing, z_min:z_max:grid_spacing]``

    """
    x_min, x_max, y_min, y_max, z_min, z_max = tuple_of_limits
    grid = np.mgrid[
        x_min:x_max:grid_spacing,
        y_min:y_max:grid_spacing,
        z_min:z_max:grid_spacing,
    ]
    return grid


def split_grid(grid, num_cores):
    """Split the grid into blocks of vertices.

    Take the overall `grid` for the system and split it into lists of cube
    vertices that can be distributed to each core.

    Parameters
    ----------
    grid : numpy.array
        3D array
    num_cores : int
        number of partitions to generate

    Returns
    -------
    list_dictionaries_for_cores : list of dict
    total_cubes : int
    num_sheets : int
    delta_array_shape : tuple

    """
    # unpack the x,y,z mgrid arrays
    x, y, z = grid
    num_z_values = z.shape[-1]
    num_sheets = z.shape[0]
    delta_array_shape = tuple(
        [n - 1 for n in x.shape]
    )  # the final target shape for return delta arrays is n-1 in each dimension

    ordered_list_per_sheet_x_values = []
    for (
        x_sheet
    ) in (
        x
    ):  # each x_sheet should have shape (25,23) and the same x value in each element
        array_all_x_values_current_sheet = x_sheet.flatten()
        ordered_list_per_sheet_x_values.append(
            array_all_x_values_current_sheet
        )
    ordered_list_per_sheet_y_values = []
    for y_columns in y:
        array_all_y_values_current_sheet = y_columns.flatten()
        ordered_list_per_sheet_y_values.append(
            array_all_y_values_current_sheet
        )
    ordered_list_per_sheet_z_values = []
    for z_slices in z:
        array_all_z_values_current_sheet = z_slices.flatten()
        ordered_list_per_sheet_z_values.append(
            array_all_z_values_current_sheet
        )

    ordered_list_cartesian_coordinates_per_sheet = []
    for x_sheet_coords, y_sheet_coords, z_sheet_coords in zip(
        ordered_list_per_sheet_x_values,
        ordered_list_per_sheet_y_values,
        ordered_list_per_sheet_z_values,
    ):
        ordered_list_cartesian_coordinates_per_sheet.append(
            list(zip(x_sheet_coords, y_sheet_coords, z_sheet_coords))
        )
    array_ordered_cartesian_coords_per_sheet = np.array(
        ordered_list_cartesian_coordinates_per_sheet
    )
    # now I'm going to want to build cubes in an ordered fashion, and in such a way that I can track the index /
    # centroid of each cube for domain decomposition / reconstruction and mayavi mlab.flow() input
    # cubes will be formed from N - 1 base sheets combined with subsequent sheets
    current_base_sheet = 0
    dictionary_cubes_centroids_indices = {}
    cube_counter = 0
    while current_base_sheet < num_sheets - 1:
        current_base_sheet_array = array_ordered_cartesian_coords_per_sheet[
            current_base_sheet
        ]
        current_top_sheet_array = array_ordered_cartesian_coords_per_sheet[
            current_base_sheet + 1
        ]  # the points of the sheet 'to the right' in the grid
        current_index = 0
        while current_index < current_base_sheet_array.shape[0] - num_z_values:
            # iterate through all the indices in each of the sheet arrays (careful to avoid extra
            # points not needed for cubes)
            column_z_level = (
                0  # start at the bottom of a given 4-point column and work up
            )
            while column_z_level < num_z_values - 1:
                current_list_cube_vertices = []
                first_two_vertices_base_sheet = current_base_sheet_array[
                    current_index : current_index + 2, ...
                ].tolist()
                first_two_vertices_top_sheet = current_top_sheet_array[
                    current_index : current_index + 2, ...
                ].tolist()
                next_two_vertices_base_sheet = current_base_sheet_array[
                    current_index
                    + num_z_values : 2
                    + num_z_values
                    + current_index,
                    ...,
                ].tolist()
                next_two_vertices_top_sheet = current_top_sheet_array[
                    current_index
                    + num_z_values : 2
                    + num_z_values
                    + current_index,
                    ...,
                ].tolist()
                for vertex_set in [
                    first_two_vertices_base_sheet,
                    first_two_vertices_top_sheet,
                    next_two_vertices_base_sheet,
                    next_two_vertices_top_sheet,
                ]:
                    current_list_cube_vertices.extend(vertex_set)
                vertex_array = np.array(current_list_cube_vertices)
                assert vertex_array.shape == (
                    8,
                    3,
                ), "vertex_array has incorrect shape"
                cube_centroid = np.average(
                    np.array(current_list_cube_vertices), axis=0
                )
                dictionary_cubes_centroids_indices[cube_counter] = {
                    "centroid": cube_centroid,
                    "vertex_list": current_list_cube_vertices,
                }
                cube_counter += 1
                current_index += 1
                column_z_level += 1
                if (
                    column_z_level == num_z_values - 1
                ):  # the loop will break but I should also increment the
                    # current_index
                    current_index += 1
        current_base_sheet += 1
    total_cubes = len(dictionary_cubes_centroids_indices)

    # produce an array of pseudo cube indices (actually the dictionary keys which are cube numbers in string format):
    pseudo_cube_indices = np.arange(0, total_cubes)
    sublist_of_cube_indices_per_core = np.array_split(
        pseudo_cube_indices, num_cores
    )
    # now, the split of pseudoindices seems to work well, and the above sublist_of_cube_indices_per_core is a list of
    # arrays of cube numbers / keys in the original dictionary
    # now I think I'll try to produce a list of dictionaries that each contain their assigned cubes based on the above
    #  per core split
    list_dictionaries_for_cores = []
    subdictionary_counter = 0
    for array_cube_indices in sublist_of_cube_indices_per_core:
        current_core_dictionary = {}
        items_to_pop = len(array_cube_indices)
        items_popped = 0
        while items_popped < items_to_pop:
            key, value = dictionary_cubes_centroids_indices.popitem()
            current_core_dictionary.update({key: value})
            items_popped += 1
        list_dictionaries_for_cores.append(current_core_dictionary)
        subdictionary_counter += 1
    return (
        list_dictionaries_for_cores,
        total_cubes,
        num_sheets,
        delta_array_shape,
    )


def per_core_work(
    start_frame_coord_array,
    end_frame_coord_array,
    dictionary_cube_data_this_core,
    MDA_selection,
    start_frame,
    end_frame,
):
    """Run the analysis on one core.

    The code to perform on a given core given the dictionary of cube data.
    """
    list_previous_frame_centroids = []
    list_previous_frame_indices = []
    # define some utility functions for trajectory iteration:

    def point_in_cube(
        array_point_coordinates, list_cube_vertices, cube_centroid
    ):
        """Determine if an array of coordinates are within a cube."""
        # the simulation particle point can't be more than half the cube side length away from the cube centroid in
        # any given dimension:
        array_cube_vertices = np.array(list_cube_vertices)
        cube_half_side_length = (
            scipy.spatial.distance.pdist(
                array_cube_vertices, "euclidean"
            ).min()
            / 2.0
        )
        array_cube_vertex_distances_from_centroid = (
            scipy.spatial.distance.cdist(
                array_cube_vertices, cube_centroid[np.newaxis, :]
            )
        )
        np.testing.assert_allclose(
            array_cube_vertex_distances_from_centroid.min(),
            array_cube_vertex_distances_from_centroid.max(),
            rtol=0,
            atol=1.5e-4,
            err_msg="not all cube vertex to centroid distances are the same, "
            "so not a true cube",
        )
        absolute_delta_coords = np.absolute(
            np.subtract(array_point_coordinates, cube_centroid)
        )
        absolute_delta_x_coords = absolute_delta_coords[..., 0]
        indices_delta_x_acceptable = np.where(
            absolute_delta_x_coords <= cube_half_side_length
        )
        absolute_delta_y_coords = absolute_delta_coords[..., 1]
        indices_delta_y_acceptable = np.where(
            absolute_delta_y_coords <= cube_half_side_length
        )
        absolute_delta_z_coords = absolute_delta_coords[..., 2]
        indices_delta_z_acceptable = np.where(
            absolute_delta_z_coords <= cube_half_side_length
        )
        intersection_xy_acceptable_arrays = np.intersect1d(
            indices_delta_x_acceptable[0], indices_delta_y_acceptable[0]
        )
        overall_indices_points_in_current_cube = np.intersect1d(
            intersection_xy_acceptable_arrays, indices_delta_z_acceptable[0]
        )
        return overall_indices_points_in_current_cube

    def update_dictionary_point_in_cube_start_frame(
        array_simulation_particle_coordinates, dictionary_cube_data_this_core
    ):
        """Basically update the cube dictionary objects assigned to this core to contain a new key/value pair
        corresponding to the indices of the relevant particles that fall within a given cube. Also, for a given cube,
        store a key/value pair for the centroid of the particles that fall within the cube.
        """
        cube_counter = 0
        for key, cube in dictionary_cube_data_this_core.items():
            index_list_in_cube = point_in_cube(
                array_simulation_particle_coordinates,
                cube["vertex_list"],
                cube["centroid"],
            )
            cube["start_frame_index_list_in_cube"] = index_list_in_cube
            if (
                len(index_list_in_cube) > 0
            ):  # if there's at least one particle in this cube
                centroid_particles_in_cube = np.average(
                    array_simulation_particle_coordinates[index_list_in_cube],
                    axis=0,
                )
                cube["centroid_of_particles_first_frame"] = (
                    centroid_particles_in_cube
                )
            else:  # empty cube
                cube["centroid_of_particles_first_frame"] = None
            cube_counter += 1

    def update_dictionary_end_frame(
        array_simulation_particle_coordinates, dictionary_cube_data_this_core
    ):
        """Update the cube dictionary objects again as appropriate for the second and final frame."""
        cube_counter = 0
        for key, cube in dictionary_cube_data_this_core.items():
            # if there were no particles in the cube in the first frame, then set dx,dy,dz each to 0
            if cube["centroid_of_particles_first_frame"] is None:
                cube["dx"] = 0
                cube["dy"] = 0
                cube["dz"] = 0
            else:  # there was at least one particle in the starting cube so we can get dx,dy,dz centroid values
                new_coordinate_array_for_particles_starting_in_this_cube = (
                    array_simulation_particle_coordinates[
                        cube["start_frame_index_list_in_cube"]
                    ]
                )
                new_centroid_for_particles_starting_in_this_cube = np.average(
                    new_coordinate_array_for_particles_starting_in_this_cube,
                    axis=0,
                )
                cube["centroid_of_paticles_final_frame"] = (
                    new_centroid_for_particles_starting_in_this_cube
                )
                delta_centroid_array_this_cube = (
                    new_centroid_for_particles_starting_in_this_cube
                    - cube["centroid_of_particles_first_frame"]
                )
                cube["dx"] = delta_centroid_array_this_cube[0]
                cube["dy"] = delta_centroid_array_this_cube[1]
                cube["dz"] = delta_centroid_array_this_cube[2]
            cube_counter += 1

    # now that the parent process is dealing with the universe object & grabbing required coordinates, each child
    # process only needs to take the coordinate arrays & perform the operations with its assigned cubes (no more file
    #  opening and trajectory iteration on each core--which I'm hoping will substantially reduce the physical memory
    # footprint of my 3D streamplot code)
    update_dictionary_point_in_cube_start_frame(
        start_frame_coord_array, dictionary_cube_data_this_core
    )
    update_dictionary_end_frame(
        end_frame_coord_array, dictionary_cube_data_this_core
    )
    return dictionary_cube_data_this_core


def produce_coordinate_arrays_single_process(
    topology_file_path,
    trajectory_file_path,
    MDA_selection,
    start_frame,
    end_frame,
):
    """Generate coordinate arrays.

    To reduce memory footprint produce only a single MDA selection and get
    desired coordinate arrays; can later send these coordinate arrays to all
    child processes rather than having each child process open a trajectory and
    waste memory.

    """
    universe_object = MDAnalysis.Universe(
        topology_file_path, trajectory_file_path
    )
    relevant_particles = universe_object.select_atoms(MDA_selection)
    # pull out coordinate arrays from desired frames:
    for ts in universe_object.trajectory:
        if ts.frame > end_frame:
            break  # stop here
        if ts.frame == start_frame:
            start_frame_relevant_particle_coordinate_array_xyz = (
                relevant_particles.positions
            )
        elif ts.frame == end_frame:
            end_frame_relevant_particle_coordinate_array_xyz = (
                relevant_particles.positions
            )
        else:
            continue
    return (
        start_frame_relevant_particle_coordinate_array_xyz,
        end_frame_relevant_particle_coordinate_array_xyz,
    )


def generate_streamlines_3d(
    topology_file_path,
    trajectory_file_path,
    grid_spacing,
    MDA_selection,
    start_frame,
    end_frame,
    xmin,
    xmax,
    ymin,
    ymax,
    zmin,
    zmax,
    maximum_delta_magnitude=2.0,
    num_cores="maximum",
):
    r"""Produce the x, y and z components of a 3D streamplot data set.

    Parameters
    ----------
    topology_file_path : str
            Absolute path to the topology file
    trajectory_file_path : str
            Absolute path to the trajectory file. It will normally be desirable
            to filter the trajectory with a tool such as GROMACS
            :program:`g_filter` (see :footcite:p:`Chavent2014`)
    grid_spacing : float
            The spacing between grid lines (angstroms)
    MDA_selection : str
            MDAnalysis selection string
    start_frame : int
            First frame number to parse
    end_frame : int
            Last frame number to parse
    xmin : float
            Minimum coordinate boundary for x-axis (angstroms)
    xmax : float
            Maximum coordinate boundary for x-axis (angstroms)
    ymin : float
            Minimum coordinate boundary for y-axis (angstroms)
    ymax : float
            Maximum coordinate boundary for y-axis (angstroms)
    maximum_delta_magnitude : float
            Absolute value of the largest displacement tolerated for the
            centroid of a group of particles ( angstroms). Values above this
            displacement will not count in the streamplot (treated as
            excessively large displacements crossing the periodic boundary)
    num_cores : int or 'maximum' (optional)
            The number of cores to use. (Default 'maximum' uses all available
            cores)

    Returns
    -------
    dx_array : array of floats
            An array object containing the displacements in the x direction
    dy_array : array of floats
            An array object containing the displacements in the y direction
    dz_array : array of floats
            An array object containing the displacements in the z direction

    Examples
    --------
    Generate 3D streamlines and visualize in `mayavi`_::

        import numpy as np

        import MDAnalysis
        import MDAnalysis.visualization.streamlines_3D

        import mayavi, mayavi.mlab

        # assign coordinate system limits and grid spacing:
        x_lower,x_upper = -8.73, 1225.96
        y_lower,y_upper = -12.58, 1224.34
        z_lower,z_upper = -300, 300
        grid_spacing_value = 20

        x1, y1, z1 = MDAnalysis.visualization.streamlines_3D.generate_streamlines_3d(
                        'testing.gro', 'testing_filtered.xtc',
                         xmin=x_lower, xmax=x_upper,
                         ymin=y_lower, ymax=y_upper,
                         zmin=z_lower, zmax=z_upper,
                         grid_spacing=grid_spacing_value, MDA_selection = 'name PO4',
                         start_frame=2, end_frame=3, num_cores='maximum')

        x, y, z = np.mgrid[x_lower:x_upper:x1.shape[0]*1j,
                          y_lower:y_upper:y1.shape[1]*1j,
                          z_lower:z_upper:z1.shape[2]*1j]

        # plot with mayavi:
        fig = mayavi.mlab.figure(bgcolor=(1.0, 1.0, 1.0), size=(800, 800), fgcolor=(0, 0, 0))
        for z_value in np.arange(z_lower, z_upper, grid_spacing_value):
            st = mayavi.mlab.flow(x, y, z, x1, y1, z1, line_width=1,
                                  seedtype='plane', integration_direction='both')
            st.streamline_type = 'tube'
            st.tube_filter.radius = 2
            st.seed.widget.origin = np.array([ x_lower,  y_upper,   z_value])
            st.seed.widget.point1 = np.array([ x_upper, y_upper,  z_value])
            st.seed.widget.point2 = np.array([ x_lower, y_lower,  z_value])
            st.seed.widget.resolution = int(x1.shape[0])
            st.seed.widget.enabled = False
        mayavi.mlab.axes(extent = [0, 1200, 0, 1200, -300, 300])
        fig.scene.z_plus_view()
        mayavi.mlab.savefig('test_streamplot_3D.png')
        # more compelling examples can be produced for vesicles and other spherical systems

    .. image:: test_streamplot_3D.png

    See Also
    --------
    MDAnalysis.visualization.streamlines.generate_streamlines


    .. _mayavi: http://docs.enthought.com/mayavi/mayavi/
    """
    # work out the number of cores to use:
    if num_cores == "maximum":
        num_cores = multiprocessing.cpu_count()  # use all available cores
    else:
        num_cores = num_cores  # use the value specified by the user
        # assert isinstance(num_cores,(int,long)), "The number of specified cores must (of course) be an integer."
    np.seterr(all="warn", over="raise")
    parent_cube_dictionary = {}  # collect all data from child processes here

    def log_result_to_parent(process_dict):
        parent_cube_dictionary.update(process_dict)

    # step 1: produce tuple of cartesian coordinate limits for the first frame
    # tuple_of_limits = determine_container_limits(topology_file_path = topology_file_path,trajectory_file_path =
    # trajectory_file_path,buffer_value=buffer_value)
    tuple_of_limits = (xmin, xmax, ymin, ymax, zmin, zmax)
    # step 2: produce a suitable grid (will assume that grid size / container size does not vary during simulation--or
    #  at least not beyond the buffer limit, such that this grid can be used for all subsequent frames)
    grid = produce_grid(
        tuple_of_limits=tuple_of_limits, grid_spacing=grid_spacing
    )
    # step 3: split the grid into a dictionary of cube information that can be sent to each core for processing:
    list_dictionaries_for_cores, total_cubes, num_sheets, delta_array_shape = (
        split_grid(grid=grid, num_cores=num_cores)
    )
    # step 3b: produce required coordinate arrays on a single core to avoid making a universe object on each core:
    start_frame_coord_array, end_frame_coord_array = (
        produce_coordinate_arrays_single_process(
            topology_file_path,
            trajectory_file_path,
            MDA_selection,
            start_frame,
            end_frame,
        )
    )
    # step 4: per process work using the above grid data split
    pool = multiprocessing.Pool(num_cores)
    for sub_dictionary_of_cube_data in list_dictionaries_for_cores:
        pool.apply_async(
            per_core_work,
            args=(
                start_frame_coord_array,
                end_frame_coord_array,
                sub_dictionary_of_cube_data,
                MDA_selection,
                start_frame,
                end_frame,
            ),
            callback=log_result_to_parent,
        )
    pool.close()
    pool.join()
    # so, at this stage the parent process now has a single dictionary with all the cube objects updated from all
    # available cores
    # the 3D streamplot (i.e, mayavi flow() function) will require separate 3D np arrays for dx,dy,dz
    # the shape of each 3D array will unfortunately have to match the mgrid data structure (bit of a pain): (
    # num_sheets - 1, num_sheets - 1, cubes_per_column)
    cubes_per_sheet = int(float(total_cubes) / float(num_sheets - 1))
    # produce dummy zero arrays for dx,dy,dz of the appropriate shape:
    dx_array = np.zeros(delta_array_shape)
    dy_array = np.zeros(delta_array_shape)
    dz_array = np.zeros(delta_array_shape)
    # now use the parent cube dictionary to correctly substitute in dx,dy,dz values
    current_sheet = 0  # which is also the current row
    y_index_current_sheet = 0  # sub row
    z_index_current_column = 0  # column
    total_cubes_current_sheet = 0
    for cube_number in range(0, total_cubes):
        dx_array[
            current_sheet, y_index_current_sheet, z_index_current_column
        ] = parent_cube_dictionary[cube_number]["dx"]
        dy_array[
            current_sheet, y_index_current_sheet, z_index_current_column
        ] = parent_cube_dictionary[cube_number]["dy"]
        dz_array[
            current_sheet, y_index_current_sheet, z_index_current_column
        ] = parent_cube_dictionary[cube_number]["dz"]
        z_index_current_column += 1
        total_cubes_current_sheet += 1
        if z_index_current_column == delta_array_shape[2]:
            # done building current y-column so iterate y value and reset z
            z_index_current_column = 0
            y_index_current_sheet += 1
            if (
                y_index_current_sheet == delta_array_shape[1]
            ):  # current sheet is complete
                current_sheet += 1
                y_index_current_sheet = 0  # restart for new sheet
                z_index_current_column = 0
                total_cubes_current_sheet = 0
    # now set velocity component values greater than a certain cutoff to 0,
    # because they tend to reflect spurious values (i.e., PBC jumping)
    dx_array[abs(dx_array) >= maximum_delta_magnitude] = 1.0
    dy_array[abs(dy_array) >= maximum_delta_magnitude] = 1.0
    dz_array[abs(dz_array) >= maximum_delta_magnitude] = 1.0
    return (dx_array, dy_array, dz_array)