1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import MDAnalysis
import MDAnalysis.analysis.diffusionmap as diffusionmap
import numpy as np
import pytest
from MDAnalysisTests.datafiles import PDB, XTC
from numpy.testing import assert_array_almost_equal, assert_allclose
@pytest.fixture(scope="module")
def u():
return MDAnalysis.Universe(PDB, XTC)
@pytest.fixture(scope="module")
def dist(u):
return diffusionmap.DistanceMatrix(u, select="backbone")
@pytest.fixture(scope="module")
def dmap(dist):
d_map = diffusionmap.DiffusionMap(dist)
d_map.run()
return d_map
def test_eg(dist, dmap):
eigvals = dmap.eigenvalues
# number of frames is trajectory is now 10 vs. 98
assert eigvals.shape == (dist.n_frames,)
# makes no sense to test values here, no physical meaning
def test_dist_weights(u):
backbone = u.select_atoms("backbone")
weights_atoms = np.ones(len(backbone.atoms))
dist = diffusionmap.DistanceMatrix(
u, select="backbone", weights=weights_atoms
)
dist.run(step=3)
dmap = diffusionmap.DiffusionMap(dist)
dmap.run()
assert_array_almost_equal(dmap.eigenvalues, [1, 1, 1, 1], 4)
assert_array_almost_equal(
dmap._eigenvectors,
(
[
[0, 0, 1, 0],
[0, 0, 0, 1],
[-0.707, -0.707, 0, 0],
[0.707, -0.707, 0, 0],
]
),
2,
)
def test_dist_weights_frames(u):
backbone = u.select_atoms("backbone")
weights_atoms = np.ones(len(backbone.atoms))
dist = diffusionmap.DistanceMatrix(
u, select="backbone", weights=weights_atoms
)
frames = np.arange(len(u.trajectory))
dist.run(frames=frames[::3])
dmap = diffusionmap.DiffusionMap(dist)
dmap.run()
assert_array_almost_equal(dmap.eigenvalues, [1, 1, 1, 1], 4)
assert_array_almost_equal(
dmap._eigenvectors,
(
[
[0, 0, 1, 0],
[0, 0, 0, 1],
[-0.707, -0.707, 0, 0],
[0.707, -0.707, 0, 0],
]
),
2,
)
def test_distvalues_ag_universe(u):
dist_universe = diffusionmap.DistanceMatrix(u, select="backbone").run()
ag = u.select_atoms("backbone")
dist_ag = diffusionmap.DistanceMatrix(ag).run()
assert_allclose(
dist_universe.results.dist_matrix, dist_ag.results.dist_matrix
)
def test_distvalues_ag_select(u):
dist_universe = diffusionmap.DistanceMatrix(u, select="backbone").run()
ag = u.select_atoms("protein")
dist_ag = diffusionmap.DistanceMatrix(ag, select="backbone").run()
assert_allclose(
dist_universe.results.dist_matrix, dist_ag.results.dist_matrix
)
def test_different_steps(u):
dmap = diffusionmap.DiffusionMap(u, select="backbone")
dmap.run(step=3)
assert dmap._eigenvectors.shape == (4, 4)
def test_transform(u, dmap):
eigvects = dmap._eigenvectors
n_eigenvectors = 4
dmap = diffusionmap.DiffusionMap(u)
dmap.run()
diffusion_space = dmap.transform(n_eigenvectors, 1)
assert diffusion_space.shape == (eigvects.shape[0], n_eigenvectors)
def test_long_traj(u):
with pytest.warns(UserWarning, match="The distance matrix is very large"):
dmap = diffusionmap.DiffusionMap(u)
dmap._dist_matrix.run(stop=1)
dmap._dist_matrix.n_frames = 5001
dmap.run()
def test_updating_atomgroup(u):
with pytest.warns(UserWarning, match="U must be a static AtomGroup"):
resid_select = "around 5 resname ALA"
ag = u.select_atoms(resid_select, updating=True)
dmap = diffusionmap.DiffusionMap(ag)
dmap.run()
def test_not_universe_atomgroup_error(u):
trj_only = u.trajectory
with pytest.raises(ValueError, match="U is not a Universe or AtomGroup"):
diffusionmap.DiffusionMap(trj_only)
def test_DistanceMatrix_attr_warning(u):
dist = diffusionmap.DistanceMatrix(u, select="backbone").run(step=3)
wmsg = f"The `dist_matrix` attribute was deprecated in MDAnalysis 2.0.0"
with pytest.warns(DeprecationWarning, match=wmsg):
assert getattr(dist, "dist_matrix") is dist.results.dist_matrix
|