1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import MDAnalysis as mda
import pytest
from MDAnalysis.analysis import nuclinfo
from MDAnalysisTests.datafiles import RNA_PSF, RNA_PDB
from numpy.testing import (
assert_almost_equal,
assert_allclose,
)
@pytest.fixture(scope="module")
def u():
return mda.Universe(RNA_PSF, RNA_PDB)
@pytest.mark.parametrize(
"i, bp, seg1, seg2, expected_value",
(
(1, 2, "RNAA", "RNAA", 4.3874702),
(22, 23, "RNAA", "RNAA", 4.1716404),
),
)
def test_wc_pair(u, i, bp, seg1, seg2, expected_value):
val = nuclinfo.wc_pair(u, i, bp, seg1=seg1, seg2=seg2)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"i, bp, seg1, seg2, expected_value",
(
(3, 17, "RNAA", "RNAA", 15.06506),
(20, 5, "RNAA", "RNAA", 3.219116),
),
)
def test_minor_pair(u, i, bp, seg1, seg2, expected_value):
val = nuclinfo.minor_pair(u, i, bp, seg1=seg1, seg2=seg2)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"i, bp, seg1, seg2, expected_value",
(
(2, 12, "RNAA", "RNAA", 26.884272),
(5, 9, "RNAA", "RNAA", 13.578535),
),
)
def test_major_pair(u, i, bp, seg1, seg2, expected_value):
val = nuclinfo.major_pair(u, i, bp, seg1=seg1, seg2=seg2)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"seg, i, expected_value",
(
("RNAA", 9, 3.16497),
("RNAA", 21, 22.07721),
),
)
def test_phase_cp(u, seg, i, expected_value):
val = nuclinfo.phase_cp(u, seg=seg, i=i)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"seg, i, expected_value",
(
("RNAA", 1, 359.57580),
("RNAA", 11, 171.71645),
),
)
def test_phase_as(u, seg, i, expected_value):
val = nuclinfo.phase_as(u, seg=seg, i=i)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"seg, i, expected_value",
(
(
"RNAA",
5,
[
302.203802,
179.043077,
35.271411,
79.499729,
201.000393,
282.14321,
210.709327,
],
),
(
"RNAA",
21,
[
280.388619,
185.12919,
56.616215,
64.87354,
187.153367,
279.340915,
215.332144,
],
),
),
)
def test_tors(u, seg, i, expected_value):
val = nuclinfo.tors(u, seg=seg, i=i)
assert_allclose(val, expected_value, rtol=1e-03)
@pytest.mark.parametrize(
"seg, i, expected_value",
(
("RNAA", 6, 279.15103),
("RNAA", 18, 298.09936),
),
)
def test_tors_alpha(u, seg, i, expected_value):
val = nuclinfo.tors_alpha(u, seg=seg, i=i)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"seg, i, expected_value",
(
("RNAA", 7, 184.20501),
("RNAA", 15, 169.70042),
),
)
def test_tors_beta(u, seg, i, expected_value):
val = nuclinfo.tors_beta(u, seg=seg, i=i)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"seg, i, expected_value",
(
("RNAA", 7, 52.72022),
("RNAA", 15, 54.59684),
),
)
def test_tors_gamma(u, seg, i, expected_value):
val = nuclinfo.tors_gamma(u, seg=seg, i=i)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"seg, i, expected_value",
(
("RNAA", 7, 84.80554),
("RNAA", 15, 82.00043),
),
)
def test_tors_delta(u, seg, i, expected_value):
val = nuclinfo.tors_delta(u, seg=seg, i=i)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"seg, i, expected_value",
(
("RNAA", 7, 200.40990),
("RNAA", 15, 210.96953),
),
)
def test_tors_eps(u, seg, i, expected_value):
val = nuclinfo.tors_eps(u, seg=seg, i=i)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"seg, i, expected_value", (("RNAA", 7, 297.84736), ("RNAA", 15, 330.24898))
)
def test_tors_zeta(u, seg, i, expected_value):
val = nuclinfo.tors_zeta(u, seg=seg, i=i)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"seg, i, expected_value",
(
("RNAA", 1, 178.37435),
("RNAA", 2, 202.03418),
("RNAA", 7, 200.91674),
("RNAA", 15, 209.32109),
),
)
def test_tors_chi(u, seg, i, expected_value):
val = nuclinfo.tors_chi(u, seg=seg, i=i)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"seg, i, expected_value",
(
("RNAA", 20, 103.07024),
("RNAA", 5, 156.62223),
("RNAA", 7, 77.94538),
("RNAA", 15, 130.18539),
),
)
def test_hydroxyl(u, seg, i, expected_value):
val = nuclinfo.hydroxyl(u, seg=seg, i=i)
assert_almost_equal(val, expected_value, decimal=3)
@pytest.mark.parametrize(
"bp1, bp2, i, seg1, seg2, seg3, expected_value",
(
(16, 2, 3, "RNAA", "RNAA", "RNAA", 314.69804),
(8, 9, 10, "RNAA", "RNAA", "RNAA", 34.50106),
),
)
def test_pseudo_dihe_baseflip(
u, bp1, bp2, i, seg1, seg2, seg3, expected_value
):
val = nuclinfo.pseudo_dihe_baseflip(u, bp1, bp2, i, seg1, seg2, seg3)
assert_almost_equal(val, expected_value, decimal=3)
|