1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import numpy as np
import MDAnalysis as mda
from MDAnalysis.analysis import align
import MDAnalysis.analysis.pca
from MDAnalysis.analysis.pca import (
PCA,
cosine_content,
rmsip,
cumulative_overlap,
)
from numpy.testing import (
assert_almost_equal,
assert_equal,
assert_array_almost_equal,
assert_allclose,
)
from MDAnalysisTests.datafiles import (
PSF,
DCD,
RANDOM_WALK,
RANDOM_WALK_TOPO,
waterPSF,
waterDCD,
)
import pytest
SELECTION = "backbone and name CA and resid 1-10"
@pytest.fixture(scope="module")
def u():
return mda.Universe(PSF, DCD)
@pytest.fixture(scope="function")
def u_fresh():
# each test gets a fresh universe
return mda.Universe(PSF, DCD)
@pytest.fixture(scope="module")
def u_aligned():
u = mda.Universe(PSF, DCD, in_memory=True)
align.AlignTraj(u, u, select=SELECTION).run()
return u
@pytest.fixture(scope="module")
def pca(u):
u.transfer_to_memory()
return PCA(u, select=SELECTION).run()
@pytest.fixture(scope="module")
def pca_aligned(u):
# run on a copy so positions in u are unchanged
u_copy = u.copy()
return PCA(u_copy, select=SELECTION, align=True).run()
def test_cov(pca, u):
atoms = u.select_atoms(SELECTION)
xyz = np.zeros((pca.n_frames, atoms.n_atoms * 3))
for i, ts in enumerate(u.trajectory):
xyz[i] = atoms.positions.ravel()
cov = np.cov(xyz, rowvar=0)
assert_array_almost_equal(pca.cov, cov, 4)
def test_cum_var(pca):
assert_almost_equal(pca.results.cumulated_variance[-1], 1)
cum_var = pca.results.cumulated_variance
cum_var = np.sort(cum_var)
assert_almost_equal(pca.results.cumulated_variance, cum_var, 5)
def test_pcs(pca):
assert_equal(
pca.results.p_components.shape, (pca._n_atoms * 3, pca._n_atoms * 3)
)
def test_pcs_n_components(u):
pca = PCA(u, select=SELECTION).run()
assert_equal(pca.n_components, pca._n_atoms * 3)
assert_equal(
pca.results.p_components.shape, (pca._n_atoms * 3, pca._n_atoms * 3)
)
pca.n_components = 10
assert_equal(pca.n_components, 10)
assert_equal(pca.results.p_components.shape, (pca._n_atoms * 3, 10))
def test_different_steps(pca, u):
atoms = u.select_atoms(SELECTION)
dot = pca.transform(atoms, start=5, stop=7, step=1)
assert_equal(dot.shape, (2, atoms.n_atoms * 3))
def test_transform_different_atoms(pca, u):
atoms = u.select_atoms("backbone and name N and resid 1-10")
with pytest.warns(UserWarning):
pca.transform(atoms, start=5, stop=7, step=1)
def test_transform_rerun(u):
atoms = u.select_atoms("bynum 1-10")
u.transfer_to_memory()
pca = PCA(u, select="bynum 1-10").run(stop=5)
dot = pca.transform(atoms)
assert_equal(dot.shape, (98, atoms.n_atoms * 3))
def test_pca_not_run(u):
atoms = u.select_atoms("bynum 1-10")
u.transfer_to_memory()
pca = PCA(u, select="bynum 1-10")
with pytest.raises(ValueError):
dot = pca.transform(atoms, stop=5)
def test_no_frames(u):
atoms = u.select_atoms(SELECTION)
u.transfer_to_memory()
with pytest.raises(ValueError):
PCA(u, select=SELECTION).run(stop=1)
def test_can_run_frames(u):
atoms = u.select_atoms(SELECTION)
u.transfer_to_memory()
PCA(u, select=SELECTION).run(frames=[0, 1])
def test_can_run_frames(u):
atoms = u.select_atoms(SELECTION)
u.transfer_to_memory()
PCA(u, select=SELECTION, mean=None).run(frames=[0, 1])
def test_transform(pca, u):
ag = u.select_atoms(SELECTION)
pca_space = pca.transform(ag, n_components=1)
assert_equal(pca_space.shape, (u.trajectory.n_frames, 1))
def test_transform_mismatch(pca, u):
with pytest.raises(ValueError):
pca.transform(u, n_components=1)
def test_transform_universe():
u1 = mda.Universe(waterPSF, waterDCD)
u2 = mda.Universe(waterPSF, waterDCD)
pca_test = PCA(u1).run()
pca_test.transform(u2)
def test_project_no_pca_run(u, pca):
pca_class = PCA(u, select=SELECTION)
with pytest.raises(ValueError) as exc:
pca_class.project_single_frame()
assert "Call run() on the PCA before projecting" in str(exc.value)
def test_project_none_anchor(u, pca):
group = u.select_atoms("resnum 1")
with pytest.raises(ValueError) as exc:
func = pca.project_single_frame(0, group=group, anchor=None)
assert ("'anchor' cannot be 'None'" + " if 'group' is not 'None'") in str(
exc.value
)
def test_project_more_anchor(u, pca):
group = u.select_atoms("resnum 1")
with pytest.raises(ValueError) as exc:
project = pca.project_single_frame(0, group=group, anchor="backbone")
assert "More than one 'anchor' found in residues" in str(exc.value)
def test_project_less_anchor(u, pca):
group = u.select_atoms("all")
with pytest.raises(ValueError) as exc:
project = pca.project_single_frame(0, group=group, anchor="name CB")
assert ("Some residues in 'group'" + " do not have an 'anchor'") in str(
exc.value
)
def test_project_invalid_anchor(u):
pca = PCA(u, select="name CA").run()
group = u.select_atoms("all")
with pytest.raises(ValueError) as exc:
project = pca.project_single_frame(0, group=group, anchor="name N")
assert "Some 'anchors' are not part of PCA class" in str(exc.value)
def test_project_compare_projections(u_fresh):
# projections along different PCs should be different
pca = PCA(u_fresh, select=SELECTION).run()
project0 = pca.project_single_frame(0)
project1 = pca.project_single_frame(1)
u_fresh.trajectory[0]
coord0 = project0(u_fresh.trajectory.ts).positions.copy()
u_fresh.trajectory[0]
coord1 = project1(u_fresh.trajectory.ts).positions
assert not np.allclose(coord0, coord1, rtol=1e-05)
def test_project_reconstruct_whole(u, u_fresh):
# structure projected along all PCs
# should be same as the original structure
pca = PCA(u_fresh, select=SELECTION).run()
project = pca.project_single_frame()
coord_original = u.trajectory.ts.positions
coord_reconstructed = project(u_fresh.trajectory.ts).positions
assert_allclose(coord_original, coord_reconstructed, rtol=1e-5)
@pytest.mark.parametrize(
("n1", "n2"), [(0, 0), (0, [0]), ([0, 1], [0, 1]), (0, 1), (1, 0)]
)
def test_project_twice_projection(u_fresh, n1, n2):
# Two succesive projections are applied. The second projection does nothing
# if both projections are along the same PC(s).
# Single PC input as an array should be equivalent to a scalar
pca = PCA(u_fresh, select=SELECTION).run()
project_first = pca.project_single_frame(n1)
project_second = pca.project_single_frame(n2)
u_fresh.trajectory[0]
coord1 = project_first(u_fresh.trajectory.ts).positions.copy()
coord2 = project_second(u_fresh.trajectory.ts).positions
if np.array_equiv(n1, n2):
assert np.allclose(coord1, coord2, rtol=1e-5)
else:
assert not np.allclose(coord1, coord2, rtol=1e-05)
def test_project_extrapolate_translation(u_fresh):
# when the projection is extended to non-PCA atoms,
# non-PCA atoms' coordinates will be conserved relative to the anchor atom
pca = PCA(u_fresh, select="resnum 1 and backbone").run()
sel = "resnum 1 and name CA CB CG"
group = u_fresh.select_atoms(sel)
project = pca.project_single_frame(0, group=group, anchor="name CA")
distances_original = mda.lib.distances.self_distance_array(group.positions)
distances_new = mda.lib.distances.self_distance_array(
project(group).positions
)
assert_allclose(distances_original, distances_new, rtol=1e-05)
def test_cosine_content():
rand = mda.Universe(RANDOM_WALK_TOPO, RANDOM_WALK)
pca_random = PCA(rand).run()
dot = pca_random.transform(rand.atoms)
content = cosine_content(dot, 0)
assert_almost_equal(content, 0.99, 1)
def test_mean_shape(pca_aligned, u):
atoms = u.select_atoms(SELECTION)
assert_equal(pca_aligned.mean.shape[0], atoms.n_atoms)
assert_equal(pca_aligned.mean.shape[1], 3)
def test_calculate_mean(pca_aligned, u, u_aligned):
ag = u_aligned.select_atoms(SELECTION)
coords = u_aligned.trajectory.coordinate_array[:, ag.ix]
assert_almost_equal(pca_aligned.mean, coords.mean(axis=0), decimal=5)
def test_given_mean(pca, u):
pca = PCA(u, select=SELECTION, align=False, mean=pca.mean).run()
assert_almost_equal(pca.cov, pca.cov, decimal=5)
def test_wrong_num_given_mean(u):
wrong_mean = [[0, 0, 0], [1, 1, 1]]
with pytest.raises(ValueError, match="Number of atoms in"):
pca = PCA(u, select=SELECTION, mean=wrong_mean).run()
def test_alignment(pca_aligned, u, u_aligned):
pca_pre_align = PCA(u_aligned, select=SELECTION, align=False).run()
assert_almost_equal(pca_aligned.mean, pca_pre_align.mean)
assert_almost_equal(pca_aligned.cov, pca_pre_align.cov)
def test_covariance_norm(pca_aligned, u):
assert_almost_equal(np.linalg.norm(pca_aligned.cov), 0.96799758, decimal=5)
def test_pca_rmsip_self(pca):
assert_almost_equal(pca.rmsip(pca), 1.0)
def test_rmsip_ortho(pca):
value = rmsip(
pca.results.p_components[:, :10].T,
pca.results.p_components[:, 10:20].T,
)
assert_almost_equal(value, 0.0)
def test_pytest_too_many_components(pca):
with pytest.raises(ValueError) as exc:
pca.rmsip(pca, n_components=(1, 2, 3))
assert "Too many values" in str(exc.value)
def test_asymmetric_rmsip(pca):
a = pca.rmsip(pca, n_components=(10, 4))
b = pca.rmsip(pca, n_components=(4, 10))
assert abs(a - b) > 0.1, "RMSIP should be asymmetric"
assert_almost_equal(b, 1.0)
def test_pca_cumulative_overlap_self(pca):
value = pca.cumulative_overlap(pca, i=1)
assert_almost_equal(value, 1.0)
def test_cumulative_overlap_ortho(pca):
pcs = pca.results.p_components
value = cumulative_overlap(pcs[:, 11].T, pcs.T, n_components=10)
assert_almost_equal(value, 0.0)
@pytest.mark.parametrize("method", ["rmsip", "cumulative_overlap"])
def test_compare_not_run_other(u, pca, method):
pca2 = PCA(u)
func = getattr(pca, method)
with pytest.raises(ValueError) as exc:
func(pca2)
assert "Call run()" in str(exc.value)
@pytest.mark.parametrize("method", ["rmsip", "cumulative_overlap"])
def test_compare_not_run_self(u, pca, method):
pca2 = PCA(u)
func = getattr(pca2, method)
with pytest.raises(ValueError) as exc:
func(pca)
assert "Call run()" in str(exc.value)
@pytest.mark.parametrize("method", ["rmsip", "cumulative_overlap"])
def test_compare_wrong_class(u, pca, method):
func = getattr(pca, method)
with pytest.raises(ValueError) as exc:
func(3)
assert "must be another PCA class" in str(exc.value)
@pytest.mark.parametrize(
"attr", ("p_components", "variance", "cumulated_variance")
)
def test_pca_attr_warning(u, attr):
pca = PCA(u, select=SELECTION).run(stop=2)
wmsg = f"The `{attr}` attribute was deprecated in MDAnalysis 2.0.0"
with pytest.warns(DeprecationWarning, match=wmsg):
getattr(pca, attr) is pca.results[attr]
@pytest.mark.parametrize(
"classname,is_parallelizable",
[
(MDAnalysis.analysis.pca.PCA, False),
],
)
def test_class_is_parallelizable(classname, is_parallelizable):
assert classname._analysis_algorithm_is_parallelizable == is_parallelizable
@pytest.mark.parametrize(
"classname,backends",
[
(MDAnalysis.analysis.pca.PCA, ("serial",)),
],
)
def test_supported_backends(classname, backends):
assert classname.get_supported_backends() == backends
|