File: test_results.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (189 lines) | stat: -rw-r--r-- 6,182 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import pickle
from collections import UserDict

import numpy as np
import pytest
from MDAnalysis.analysis import results as results_module
from numpy.testing import assert_equal
from itertools import cycle


class Test_Results:
    @pytest.fixture
    def results(self):
        return results_module.Results(a=1, b=2)

    def test_get(self, results):
        assert results.a == results["a"] == 1

    def test_no_attr(self, results):
        msg = "'Results' object has no attribute 'c'"
        with pytest.raises(AttributeError, match=msg):
            results.c

    def test_set_attr(self, results):
        value = [1, 2, 3, 4]
        results.c = value
        assert results.c is results["c"] is value

    def test_set_key(self, results):
        value = [1, 2, 3, 4]
        results["c"] = value
        assert results.c is results["c"] is value

    @pytest.mark.parametrize("key", dir(UserDict) + ["data"])
    def test_existing_dict_attr(self, results, key):
        msg = f"'{key}' is a protected dictionary attribute"
        with pytest.raises(AttributeError, match=msg):
            results[key] = None

    @pytest.mark.parametrize("key", dir(UserDict) + ["data"])
    def test_wrong_init_type(self, key):
        msg = f"'{key}' is a protected dictionary attribute"
        with pytest.raises(AttributeError, match=msg):
            results_module.Results(**{key: None})

    @pytest.mark.parametrize("key", ("0123", "0j", "1.1", "{}", "a b"))
    def test_weird_key(self, results, key):
        msg = f"'{key}' is not a valid attribute"
        with pytest.raises(ValueError, match=msg):
            results[key] = None

    def test_setattr_modify_item(self, results):
        mylist = [1, 2]
        mylist2 = [3, 4]
        results.myattr = mylist
        assert results.myattr is mylist
        results["myattr"] = mylist2
        assert results.myattr is mylist2
        mylist2.pop(0)
        assert len(results.myattr) == 1
        assert results.myattr is mylist2

    def test_setitem_modify_item(self, results):
        mylist = [1, 2]
        mylist2 = [3, 4]
        results["myattr"] = mylist
        assert results.myattr is mylist
        results.myattr = mylist2
        assert results.myattr is mylist2
        mylist2.pop(0)
        assert len(results["myattr"]) == 1
        assert results["myattr"] is mylist2

    def test_delattr(self, results):
        assert hasattr(results, "a")
        delattr(results, "a")
        assert not hasattr(results, "a")

    def test_missing_delattr(self, results):
        assert not hasattr(results, "d")
        msg = "'Results' object has no attribute 'd'"
        with pytest.raises(AttributeError, match=msg):
            delattr(results, "d")

    def test_pop(self, results):
        assert hasattr(results, "a")
        results.pop("a")
        assert not hasattr(results, "a")

    def test_update(self, results):
        assert not hasattr(results, "spudda")
        results.update({"spudda": "fett"})
        assert results.spudda == "fett"

    def test_update_data_fail(self, results):
        msg = f"'data' is a protected dictionary attribute"
        with pytest.raises(AttributeError, match=msg):
            results.update({"data": 0})

    def test_pickle(self, results):
        results_p = pickle.dumps(results)
        results_new = pickle.loads(results_p)

    @pytest.mark.parametrize(
        "args, kwargs, length",
        [
            (({"darth": "tater"},), {}, 1),
            ([], {"darth": "tater"}, 1),
            (({"darth": "tater"},), {"yam": "solo"}, 2),
            (({"darth": "tater"},), {"darth": "vader"}, 1),
        ],
    )
    def test_initialize_arguments(self, args, kwargs, length):
        results = results_module.Results(*args, **kwargs)
        ref = dict(*args, **kwargs)
        assert ref == results
        assert len(results) == length

    def test_different_instances(self, results):
        new_results = results_module.Results(darth="tater")
        assert new_results.data is not results.data


class Test_ResultsGroup:
    @pytest.fixture
    def results_0(self):
        return results_module.Results(
            sequence=[0],
            ndarray_mean=np.array([0, 0, 0]),
            ndarray_sum=np.array([0, 0, 0, 0]),
            float=0.0,
            float_sum=0.0,
        )

    @pytest.fixture
    def results_1(self):
        return results_module.Results(
            sequence=[1],
            ndarray_mean=np.array([1, 1, 1]),
            ndarray_sum=np.array([1, 1, 1, 1]),
            float=1.0,
            float_sum=1.0,
        )

    @pytest.fixture
    def merger(self):
        RG = results_module.ResultsGroup
        lookup = {
            "sequence": RG.flatten_sequence,
            "ndarray_mean": RG.ndarray_mean,
            "ndarray_sum": RG.ndarray_sum,
            "float": RG.float_mean,
            "float_sum": lambda floats: sum(floats),
        }
        return RG(lookup=lookup)

    @pytest.mark.parametrize("n", [1, 2, 5, 14])
    def test_all_results(self, results_0, results_1, merger, n):
        objects = [
            obj for obj, _ in zip(cycle([results_0, results_1]), range(n))
        ]

        arr = [i for _, i in zip(range(n), cycle([0, 1]))]
        answers = {
            "sequence": arr,
            "ndarray_mean": [np.mean(arr) for _ in range(3)],
            "ndarray_sum": [np.sum(arr) for _ in range(4)],
            "float": np.mean(arr),
            "float_sum": np.sum(arr),
        }

        results = merger.merge(objects)
        for attr, merged_value in results.items():
            assert_equal(
                merged_value,
                answers.get(attr),
                err_msg=f"{attr=}, {merged_value=}, {arr=}, {objects=}",
            )

    def test_missing_aggregator(self, results_0, results_1, merger):
        original_float_lookup = merger._lookup.get("float")
        merger._lookup["float"] = None

        with pytest.raises(
            ValueError, match="No aggregation function for key='float'"
        ):
            merger.merge([results_0, results_1], require_all_aggregators=True)

        merger._lookup["float"] = original_float_lookup