1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import numpy as np
from MDAnalysisTests import datafiles
from MDAnalysisTests.datafiles import (
PDB_small,
PDB,
LAMMPSdata,
LAMMPSdata2,
LAMMPSdcd2,
LAMMPSdata_mini,
LAMMPSdata_additional_columns,
PSF_TRICLINIC,
DCD_TRICLINIC,
PSF_NAMD_TRICLINIC,
DCD_NAMD_TRICLINIC,
)
class RefAdKSmall(object):
"""Mixin class to provide comparison numbers.
Based on small PDB with AdK (:data:`PDB_small`).
.. Note::
All distances must be in ANGSTROEM as this is the MDAnalysis
default unit. All readers must return Angstroem by default.
"""
filename = datafiles.PDB_small
ref_coordinates = {
# G11:CA, copied frm adk_open.pdb
"A10CA": np.array([-1.198, 7.937, 22.654]),
}
ref_distances = {"endtoend": 11.016959}
ref_E151HA2_index = 2314
ref_n_atoms = 3341
ref_charmm_totalcharge = -4.0
ref_charmm_Hcharges = [0.33] + 203 * [0.31]
ref_charmm_ArgCAcharges = 13 * [0.07]
ref_charmm_ProNcharges = 10 * [-0.29]
ref_unitcell = np.array(
[80.017, 80.017, 80.017, 60.0, 60.0, 90.0], dtype=np.float32
)
ref_volume = 0.0
class RefAdK(object):
"""Mixin class to provide comparison numbers.
Based on PDB/GRO with AdK in water + Na+ (:data:`PDB`).
.. Note::
All distances must be in ANGSTROEM as this is the MDAnalysis
default unit. All readers must return Angstroem by default.
"""
filename = datafiles.PDB
ref_coordinates = {
# Angstroem as MDAnalysis unit!!
"A10CA": np.array([62.97600174, 62.08800125, 20.2329998]),
}
ref_distances = {"endtoend": 9.3513174}
ref_E151HA2_index = 2314
ref_n_atoms = 47681
ref_Na_sel_size = 4
# CRYST1 80.017 80.017 80.017 60.00 60.00 90.00
ref_unitcell = np.array(
[80.017, 80.017, 80.017, 60.0, 60.0, 90.0], dtype=np.float32
)
# ref_volume = 362270.0 # computed with Gromacs ## NOT EXACT!
ref_volume = 362269.520669292
class Ref2r9r(object):
"""Mixin class to provide comparison numbers.
Based on S6 helices of chimeric Kv channel
.. Note::
All distances must be in ANGSTROEM as this is the MDAnalysis
default unit. All readers must return Angstroem by default.
"""
ref_n_atoms = 1284
ref_sum_centre_of_geometry = -98.24146
ref_n_frames = 10
class RefACHE(object):
"""Mixin class to provide comparison numbers.
ACHE peptide
# COM check in VMD::
set p [atomselect top "not water"]
set total {0 0 0};
for {set i 0} {$i < 11} {incr i} {
$p frame $i; set total [vecadd $total [measure center $p]]}
puts [vecsum $total]
# 472.2592159509659
"""
ref_n_atoms = 252
ref_proteinatoms = ref_n_atoms
ref_sum_centre_of_geometry = 472.2592159509659 # 430.44807815551758
ref_n_frames = 11
ref_periodic = False
class RefCappedAla(object):
"""Mixin class to provide comparison numbers.
Capped Ala in water
# COM check in VMD (load trajectory as *AMBER with periodic box*!)::
set p [atomselect top "not water"]
set total {0 0 0};
for {set i 0} {$i < 11} {incr i} {
$p frame $i; set total [vecadd $total [measure center $p]]}
puts [vecsum $total]
# 686.276834487915
"""
ref_n_atoms = 5071
ref_proteinatoms = 22
ref_sum_centre_of_geometry = 686.276834487915
ref_n_frames = 11
ref_periodic = True
class RefVGV(object):
"""Mixin class to provide comparison numbers.
Computed from bala.trj::
w = MDAnalysis.Universe(PRMncdf, TRJncdf)
ref_n_atoms = len(w.atoms) ref_proteinatoms = len(w.select_atoms("protein"))
ref_sum_centre_of_geometry = np.sum([protein.center_of_geometry()
for ts in w.trajectory])
"""
topology = datafiles.PRMncdf
filename = datafiles.NCDF
ref_n_atoms = 2661
ref_proteinatoms = 50
ref_sum_centre_of_geometry = 1552.9125
ref_n_frames = 30
ref_periodic = True
class RefTZ2(object):
"""Reference values for the cpptraj testcase tz2.truncoct.nc
Used under the GPL v3.
"""
topology = datafiles.PRM7
filename = datafiles.NCDFtruncoct
ref_n_atoms = 5827
ref_proteinatoms = 217
ref_sum_centre_of_geometry = -68.575745
ref_n_frames = 10
ref_periodic = True
class RefTRZ(object):
# ref_coordinates = {}
# ref_distances = {'endtoend': }
ref_n_atoms = 8184
ref_dimensions = np.array(
[
55.422830581665039,
55.422830581665039,
55.422830581665039,
90.0,
90.0,
90.0,
],
dtype=np.float32,
)
ref_volume = 170241.762765
ref_n_frames = 6
ref_coordinates = np.array(
[72.3163681, -130.31130981, 19.97969055], dtype=np.float32
)
ref_velocities = np.array(
[[14.83297443, 18.02611542, 6.07733774]], dtype=np.float32
)
ref_delta = 0.001
ref_time = 0.01
ref_title = (
"ABCDEFGHIJKLMNOPQRSTUVWXYZ12345678901234"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ12345678901234"
)
class RefLAMMPSData(object):
filename = LAMMPSdata
n_atoms = 18364
pos_atom1 = np.array(
[11.89985657, 48.4455719, 19.09719849], dtype=np.float32
)
vel_atom1 = np.array(
[-5667.59300232, 7913.80977631, -3007.79533386], dtype=np.float32
)
dimensions = np.array(
[55.42282867, 55.42282867, 55.42282867, 90.0, 90.0, 90.0],
dtype=np.float32,
)
class RefLAMMPSDataDCD(object):
format = "LAMMPS"
topology = LAMMPSdata2
trajectory = LAMMPSdcd2
n_atoms = 12421
n_frames = 5
dt = 0.5 # ps per frame
mean_dimensions = np.array(
[50.66186142, 47.18824387, 52.33762741, 90.0, 90.0, 90.0],
dtype=np.float32,
)
class RefLAMMPSDataMini(object):
filename = LAMMPSdata_mini
n_atoms = 1
pos_atom1 = np.array(
[11.89985657, 48.4455719, 19.09719849], dtype=np.float32
)
vel_atom1 = np.array(
[-5667.59300232, 7913.80977631, -3007.79533386], dtype=np.float32
)
dimensions = np.array(
[60.0, 50.0, 30.0, 90.0, 90.0, 90.0], dtype=np.float32
)
class RefLAMMPSDataAdditionalColumns(object):
q = np.array(
[
2.58855e-03,
6.91952e-05,
1.05548e-02,
4.20319e-03,
9.19172e-03,
4.79777e-03,
6.36864e-04,
5.87125e-03,
-2.18125e-03,
6.88910e-03,
]
)
p = np.array(5 * [1.1, 1.2])
|