1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import MDAnalysis as mda
import numpy as np
import pytest
from numpy.testing import assert_equal, assert_allclose
from MDAnalysisTests.datafiles import (
DLP_CONFIG,
DLP_CONFIG_minimal,
DLP_CONFIG_order,
DLP_HISTORY,
DLP_HISTORY_minimal,
DLP_HISTORY_order,
DLP_HISTORY_minimal_cell,
)
class _DLPConfig(object):
@pytest.fixture()
def r(self):
return mda.coordinates.DLPoly.ConfigReader
@pytest.fixture()
def rd(self, r):
return r(self.f)
@pytest.fixture()
def ts(self, rd):
return rd.ts
def test_read_unitcell(self, ts):
ref = np.array(
[
[18.6960000000, 0.0000000000, 0.0000000000],
[0.0000000000, 18.6960000000, 0.0000000000],
[0.0000000000, 0.0000000000, 18.6960000000],
]
)
assert_allclose(
ts.dimensions, mda.coordinates.core.triclinic_box(*ref)
)
def test_positions(self, ts):
ref = np.array([-7.608595309, -7.897790000, -7.892053559])
assert_allclose(ts._pos[0], ref)
def test_velocities(self, ts):
ref = np.array([1.056610291, -1.218664448, 3.345828610])
assert_allclose(ts._velocities[0], ref)
def test_forces(self, ts):
ref = np.array([-1979.558687, 739.7961625, 1027.996603])
assert_allclose(ts._forces[0], ref)
class TestConfigReader(_DLPConfig):
f = DLP_CONFIG
def test_read(self, rd):
assert_equal(rd.title, "DL_POLY: Potassium Chloride Test Case")
class TestConfigOrder(_DLPConfig):
f = DLP_CONFIG_order
class TestConfigMinimal(_DLPConfig):
f = DLP_CONFIG_minimal
def test_read_unitcell(self):
pass
# cythonised class can no longer raise AttributeError
# so changed to test of has_... properties
def test_velocities(self, ts):
assert ts.has_velocities == False
def test_forces(self, ts):
assert ts.has_forces == False
class _DLPConfig2(object):
@pytest.fixture()
def u(self):
return mda.Universe(self.f, format="CONFIG")
def test_names(self, u):
ref = ["C", "B", "A"]
assert_equal([a.name for a in u.atoms], ref)
def test_pos(self, u):
ref = np.array([-7.821414265, -4.635443539, -4.732164540])
assert_allclose(u.atoms[2].position, ref)
def test_vel(self, u):
ref = np.array([2.637614561, 0.5778767520e-01, -1.704765568])
assert_allclose(u.atoms[2].velocity, ref)
def test_for(self, u):
ref = np.array([150.3309776, -812.6932914, 1429.413120])
assert_allclose(u.atoms[2].force, ref)
def test_number(self, u):
ref = [0, 1, 2]
assert_equal([a.index for a in u.atoms], ref)
class TestConfigReader2(_DLPConfig2):
f = DLP_CONFIG_order
class TestConfigReaderMinimal2(_DLPConfig2):
f = DLP_CONFIG_minimal
def test_vel(self):
pass
def test_for(self):
pass
class _DLHistory(object):
@pytest.fixture()
def u(self):
return mda.Universe(self.f, format="HISTORY")
def test_len(self, u):
assert_equal(len(u.trajectory), 3)
assert_equal([ts.frame for ts in u.trajectory], [0, 1, 2])
def test_getting(self, u):
ts = u.trajectory[1]
assert_equal(ts.frame, 1)
def test_slicing(self, u):
nums = [ts.frame for ts in u.trajectory[::2]]
assert_equal(nums, [0, 2])
def test_slicing_2(self, u):
nums = [ts.frame for ts in u.trajectory[1::-2]]
assert_equal(nums, [1])
def test_position(self, u):
ref = np.array(
[
[-7.595541651, -7.898808509, -7.861763110],
[-7.019565641, -7.264933320, -7.045213551],
[-6.787470785, -6.912685099, -6.922156843],
]
)
for ts, r in zip(u.trajectory, ref):
assert_allclose(u.atoms[0].position, r)
def test_velocity(self, u):
ref = np.array(
[
[1.109901682, -1.500264697, 4.752251711],
[-1.398479696, 2.091141311, 1.957430003],
[0.2570827995, -0.7146878577, -3.547444215],
]
)
for ts, r in zip(u.trajectory, ref):
assert_allclose(u.atoms[0].velocity, r)
def test_force(self, u):
ref = np.array(
[
[-2621.386432, 1579.334443, 1041.103241],
[-1472.262341, 2450.379615, -8149.916193],
[2471.802059, -3828.467296, 3596.679326],
]
)
for ts, r in zip(u.trajectory, ref):
assert_allclose(u.atoms[0].force, r)
def test_unitcell(self, u):
ref1 = np.array(
[
[18.6796195135, 0.0000058913, -0.0000139999],
[0.0000058913, 18.6794658887, -0.0000016255],
[-0.0000139999, -0.0000016255, 18.6797229304],
]
)
ref2 = np.array(
[
[17.2277221163, -0.0044216126, -0.0003229237],
[-0.0044205826, 17.2124253987, 0.0019439244],
[-0.0003226531, 0.0019445826, 17.2416976104],
]
)
ref3 = np.array(
[
[16.5435673205, -0.0108424742, 0.0014935464],
[-0.0108333201, 16.5270298891, 0.0011094612],
[0.0014948739, 0.0011058349, 16.5725517831],
]
)
for ts, r in zip(u.trajectory, [ref1, ref2, ref3]):
assert_allclose(
ts.dimensions, mda.coordinates.core.triclinic_box(*r)
)
class TestDLPolyHistory(_DLHistory):
f = DLP_HISTORY
class TestDLPolyHistoryOrder(_DLHistory):
f = DLP_HISTORY_order
class TestDLPolyHistoryMinimal(_DLHistory):
f = DLP_HISTORY_minimal
def test_velocity(self, u):
with pytest.raises(mda.NoDataError):
getattr(u.atoms[0], "velocity")
def test_force(self, u):
with pytest.raises(mda.NoDataError):
getattr(u.atoms[0], "force")
def test_unitcell(self):
pass
class TestDLPolyHistoryMinimalCell(_DLHistory):
f = DLP_HISTORY_minimal_cell
def test_velocity(self, u):
with pytest.raises(mda.NoDataError):
getattr(u.atoms[0], "velocity")
def test_force(self, u):
with pytest.raises(mda.NoDataError):
getattr(u.atoms[0], "force")
|