1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import numpy as np
from numpy.testing import (
assert_almost_equal,
assert_equal,
)
import pytest
import MDAnalysis as mda
from MDAnalysis.lib.distances import calc_bonds, calc_angles, calc_dihedrals
from MDAnalysisTests.datafiles import LAMMPSdata_many_bonds
from MDAnalysis.core.topologyobjects import (
TopologyGroup,
TopologyObject,
TopologyDict,
# TODO: the following items are not used
Bond,
Angle,
Dihedral,
ImproperDihedral,
)
from MDAnalysisTests.datafiles import PSF, DCD, TRZ_psf, TRZ
@pytest.fixture(scope="module")
def PSFDCD():
return mda.Universe(PSF, DCD)
class TestTopologyObjects(object):
"""Test the base TopologyObject funtionality
init
repr
eq
ne
iter
len
"""
precision = 3 # see Issue #271 and #1556
@staticmethod
@pytest.fixture
def a1(PSFDCD):
return PSFDCD.atoms[1:3]
@staticmethod
@pytest.fixture
def a2(PSFDCD):
return PSFDCD.atoms[3:5]
@staticmethod
@pytest.fixture
def TO1(a1):
return TopologyObject(a1.indices, a1.universe)
@staticmethod
@pytest.fixture
def TO2(a2):
return TopologyObject(a2.indices, a2.universe)
@staticmethod
@pytest.fixture
def b(PSFDCD):
return PSFDCD.atoms[12].bonds[0]
def test_repr(self, TO1):
assert_equal(repr(TO1), "<TopologyObject between: Atom 1, Atom 2>")
def test_eq(self, a1, TO1, TO2, PSFDCD):
TO1_b = TopologyObject(a1.indices, PSFDCD)
assert_equal(TO1 == TO1_b, True)
assert_equal(TO1 == TO2, False)
def test_ne(self, TO1, TO2, a1, PSFDCD):
TO1_b = TopologyObject(a1.indices, PSFDCD)
assert_equal(TO1 != TO1_b, False)
assert_equal(TO1 != TO2, True)
def test_gt(self, TO1, TO2):
assert_equal(TO1 > TO2, False)
def test_lt(self, TO1, TO2):
assert_equal(TO1 < TO2, True)
def test_iter(self, a1, TO1):
assert_equal(list(a1), list(TO1))
def test_len(self, a1):
assert_equal(len(a1), 2)
def test_hash(self, TO1, TO2, a1, PSFDCD):
assert hash(TO1) != hash(TO2)
# Different universe should yield different hash
u = mda.Universe(PSF, DCD)
ag = u.atoms[1:3]
TO3 = TopologyObject(ag.indices, u)
assert hash(TO1) != hash(TO3)
# Different order should yield different hash
u = mda.Universe(PSF, DCD)
ag = u.atoms[[2, 1]]
TO3 = TopologyObject(ag.indices, u)
assert hash(TO1) != hash(TO3)
# should work with TO from the same atomgroup
TO3 = TopologyObject(a1.indices, PSFDCD)
assert_equal(hash(TO1), hash(TO3))
def test_indices(self, b):
assert_equal(b.indices, tuple([a.index for a in b.atoms]))
# Bond class checks
def test_partner(self, b):
a1, a2 = b
assert_equal(b.partner(a1), a2)
assert_equal(b.partner(a2), a1)
def test_partner_VE(self, PSFDCD, b):
a3 = PSFDCD.atoms[0]
with pytest.raises(ValueError):
b.partner(a3)
def test_bondlength(self, b):
assert_almost_equal(b.length(), 1.7661301556941993, self.precision)
def test_bondrepr(self, b):
assert_equal(repr(b), "<Bond between: Atom 9, Atom 12>")
# Angle class checks
def test_angle(self, PSFDCD):
angle = PSFDCD.atoms[210].angles[0]
assert_almost_equal(angle.angle(), 107.20893, self.precision)
assert_almost_equal(angle.value(), 107.20893, self.precision)
def test_angle_repr(self, PSFDCD):
angle = PSFDCD.atoms[[30, 10, 20]].angle
assert_equal(repr(angle), "<Angle between: Atom 30, Atom 10, Atom 20>")
def test_angle_180(self):
# we edit the coordinates, so make our own universe
u = mda.Universe(PSF, DCD)
angle = u.atoms[210].angles[0]
coords = np.array([[1, 1, 1], [2, 1, 1], [3, 1, 1]], dtype=np.float32)
angle.atoms.positions = coords
assert_almost_equal(angle.value(), 180.0, self.precision)
# Dihedral class check
def test_dihedral(self, PSFDCD):
dihedral = PSFDCD.atoms[14].dihedrals[0]
assert_almost_equal(dihedral.dihedral(), 18.317778, self.precision)
assert_almost_equal(dihedral.value(), 18.317778, self.precision)
def test_dihedral_repr(self, PSFDCD):
dihedral = PSFDCD.atoms[[4, 7, 8, 1]].dihedral
assert_equal(
repr(dihedral),
"<Dihedral between: Atom 4, Atom 7, Atom 8, Atom 1>",
)
# Improper_Dihedral class check
def test_improper(self, PSFDCD):
imp = PSFDCD.atoms[4].impropers[0]
assert_almost_equal(imp.improper(), -3.8370631, self.precision)
assert_almost_equal(imp.value(), -3.8370631, self.precision)
def test_improper_repr(self, PSFDCD):
imp = PSFDCD.atoms[[4, 7, 8, 1]].improper
assert_equal(
repr(imp),
"<ImproperDihedral between: Atom 4, Atom 7, Atom 8, Atom 1>",
)
def test_ureybradley_repr(self, PSFDCD):
ub = PSFDCD.atoms[[30, 10]].ureybradley
assert_equal(repr(ub), "<UreyBradley between: Atom 30, Atom 10>")
def test_ureybradley_repr_VE(self, PSFDCD):
with pytest.raises(ValueError):
ub = PSFDCD.atoms[[30, 10, 2]].ureybradley
def test_ureybradley_partner(self, PSFDCD):
ub = PSFDCD.atoms[[30, 10]].ureybradley
assert ub.partner(PSFDCD.atoms[30]) == PSFDCD.atoms[10]
assert ub.partner(PSFDCD.atoms[10]) == PSFDCD.atoms[30]
def test_ureybradley_distance(self, b):
assert_almost_equal(
b.atoms.ureybradley.distance(), b.length(), self.precision
)
def test_cmap_repr(self, PSFDCD):
cmap = PSFDCD.atoms[[4, 7, 8, 1, 2]].cmap
assert_equal(
repr(cmap),
"<CMap between: Atom 4, Atom 7, Atom 8, Atom 1, Atom 2>",
)
def test_cmap_repr_VE(self, PSFDCD):
with pytest.raises(ValueError):
cmap = PSFDCD.atoms[[30, 10, 2]].cmap
class TestTopologyGroup(object):
"""Tests TopologyDict and TopologyGroup classes with psf input"""
@staticmethod
@pytest.fixture
def res1(PSFDCD):
return PSFDCD.residues[0]
@staticmethod
@pytest.fixture
def res2(PSFDCD):
return PSFDCD.residues[1]
@staticmethod
@pytest.fixture
def b_td(PSFDCD):
return PSFDCD.atoms.bonds.topDict
@staticmethod
@pytest.fixture
def a_td(PSFDCD):
return PSFDCD.atoms.angles.topDict
@staticmethod
@pytest.fixture
def t_td(PSFDCD):
return PSFDCD.atoms.dihedrals.topDict
# Checking TopologyDict functionality
# * check that enough types are made
# * check the identity of one of the keys
# * check uniqueness of keys (ie reversed doesnt exist)
# * then check same key reversed is accepted
# * then select based on key
# * then select based on reversed key and check output is the same
# all for Bonds Angles and Dihedrals
def test_td_len(self, b_td):
assert len(b_td) == 57
def test_td_iter(self, b_td):
assert list(b_td) == list(b_td.dict.keys())
def test_td_keyerror(self, b_td):
with pytest.raises(KeyError):
b_td[("something", "stupid")]
def test_td_universe(self, b_td, PSFDCD):
assert b_td.universe is PSFDCD
def test_bonds_types(self, PSFDCD, res1):
"""Tests TopologyDict for bonds"""
assert len(PSFDCD.atoms.bonds.types()) == 57
assert len(res1.atoms.bonds.types()) == 12
def test_bonds_contains(self, b_td):
assert ("57", "2") in b_td
def test_bond_uniqueness(self, PSFDCD):
bondtypes = PSFDCD.atoms.bonds.types()
# check that a key doesn't appear in reversed format in keylist
# have to exclude case of b[::-1] == b as this is false positive
assert not any(
[b[::-1] in bondtypes for b in bondtypes if b[::-1] != b]
)
def test_bond_reversal(self, PSFDCD, b_td):
bondtypes = PSFDCD.atoms.bonds.types()
b = bondtypes[1]
assert all([b in b_td, b[::-1] in b_td])
tg1 = b_td[b]
tg2 = b_td[b[::-1]]
assert tg1 == tg2
# This test will pass as long as `TopologyDict._removeDupes()` is
# not run. Otherwise bond type 12 and 21 will be seen as duplicates
# and combined.
def test_bond_no_reversal(self):
universe = mda.Universe(LAMMPSdata_many_bonds, format="DATA")
nbonds = 22
bondtypes = universe.atoms.bonds.types()
assert len(bondtypes) == nbonds
def test_angles_types(self, PSFDCD):
"""TopologyDict for angles"""
assert len(PSFDCD.atoms.angles.types()) == 130
def test_angles_contains(self, a_td):
assert ("23", "73", "1") in a_td
def test_angles_uniqueness(self, a_td):
bondtypes = a_td.keys()
assert not any(b[::-1] in bondtypes for b in bondtypes if b[::-1] != b)
def test_angles_reversal(self, a_td):
bondtypes = list(a_td.keys())
b = bondtypes[1]
assert all([b in a_td, b[::-1] in a_td])
tg1 = a_td[b]
tg2 = a_td[b[::-1]]
assert tg1 == tg2
def test_dihedrals_types(self, PSFDCD):
"""TopologyDict for dihedrals"""
assert len(PSFDCD.atoms.dihedrals.types()) == 220
def test_dihedrals_contains(self, t_td):
assert ("30", "29", "20", "70") in t_td
def test_dihedrals_uniqueness(self, t_td):
bondtypes = t_td.keys()
assert not any(b[::-1] in bondtypes for b in bondtypes if b[::-1] != b)
def test_dihedrals_reversal(self, t_td):
bondtypes = list(t_td.keys())
b = bondtypes[1]
assert all([b in t_td, b[::-1] in t_td])
tg1 = t_td[b]
tg2 = t_td[b[::-1]]
assert tg1 == tg2
def test_bad_creation(self):
"""Test making a TopologyDict out of nonsense"""
inputlist = ["a", "b", "c"]
with pytest.raises(TypeError):
TopologyDict(inputlist)
def test_bad_creation_TG(self):
"""Test making a TopologyGroup out of nonsense"""
inputlist = ["a", "b", "c"]
with pytest.raises(TypeError):
TopologyGroup(inputlist)
def test_tg_creation_bad_btype(self, PSFDCD):
vals = np.array([[0, 10], [5, 15]])
with pytest.raises(ValueError):
TopologyGroup(vals, PSFDCD, btype="apple")
def test_bond_tg_creation_notype(self, PSFDCD):
vals = np.array([[0, 10], [5, 15]])
tg = TopologyGroup(vals, PSFDCD)
assert tg.btype == "bond"
assert_equal(tg[0].indices, (0, 10))
assert_equal(tg[1].indices, (5, 15))
def test_angle_tg_creation_notype(self, PSFDCD):
vals = np.array([[0, 5, 10], [5, 10, 15]])
tg = TopologyGroup(vals, PSFDCD)
assert tg.btype == "angle"
assert_equal(tg[0].indices, (0, 5, 10))
assert_equal(tg[1].indices, (5, 10, 15))
def test_dihedral_tg_creation_notype(self, PSFDCD):
vals = np.array([[0, 2, 4, 6], [5, 7, 9, 11]])
tg = TopologyGroup(vals, PSFDCD)
assert tg.btype == "dihedral"
assert_equal(tg[0].indices, (0, 2, 4, 6))
assert_equal(tg[1].indices, (5, 7, 9, 11))
def test_create_guessed_tg(self, PSFDCD):
vals = np.array([[0, 10], [5, 15]])
tg = TopologyGroup(vals, PSFDCD, guessed=True)
assert_equal(tg._guessed, np.array([True, True]))
def test_create_guessed_tg_2(self, PSFDCD):
vals = np.array([[0, 10], [5, 15]])
tg = TopologyGroup(vals, PSFDCD, guessed=False)
assert_equal(tg._guessed, np.array([False, False]))
def test_TG_equality(self, PSFDCD):
"""Make two identical TGs,
* check they're equal
* change one very slightly and see if they notice
"""
tg = PSFDCD.atoms.bonds.selectBonds(("23", "3"))
tg2 = PSFDCD.atoms.bonds.selectBonds(("23", "3"))
assert tg == tg2
tg3 = PSFDCD.atoms.bonds.selectBonds(("81", "10"))
assert not (tg == tg3)
assert tg != tg3
def test_create_TopologyGroup(self, res1, PSFDCD):
res1_tg = res1.atoms.bonds.select_bonds(("23", "3")) # make a tg
assert len(res1_tg) == 4 # check size of tg
testbond = PSFDCD.atoms[7].bonds[0]
assert testbond in res1_tg # check a known bond is present
res1_tg2 = res1.atoms.bonds.select_bonds(("23", "3"))
assert res1_tg == res1_tg2
@pytest.mark.parametrize(
"attr", ["bonds", "angles", "dihedrals", "impropers"]
)
def test_TG_loose_intersection(self, PSFDCD, attr):
"""Pull bonds from a TG which are at least partially in an AG"""
ag = PSFDCD.atoms[10:60]
TG = getattr(PSFDCD.atoms, attr)
ref = getattr(ag, attr)
newTG = TG.atomgroup_intersection(ag)
assert newTG == ref
def test_TG_strict_intersection(self, PSFDCD):
"""Pull bonds from TG which are fully in an AG"""
def check_strict_intersection(topg, atomg):
new_topg = topg.atomgroup_intersection(atomg, strict=True)
return all([all([a in atomg for a in b.atoms]) for b in new_topg])
def manual(topg, atomg):
"""Gives a set of the Bonds that should be found"""
if len(atomg) == 1: # hack for Atom input
atomg = [atomg]
man = []
for b in topg:
if all([a in atomg for a in b.atoms]):
man.append(b)
return set(man)
testinput = PSFDCD.atoms[10:60]
# bonds
assert check_strict_intersection(PSFDCD.atoms.bonds, testinput)
assert manual(PSFDCD.atoms.bonds, testinput) == set(
PSFDCD.atoms.bonds.atomgroup_intersection(testinput, strict=True)
)
# angles
assert check_strict_intersection(PSFDCD.atoms.angles, testinput)
assert manual(PSFDCD.atoms.angles, testinput) == set(
PSFDCD.atoms.angles.atomgroup_intersection(testinput, strict=True)
)
# dihedrals
assert check_strict_intersection(PSFDCD.atoms.dihedrals, testinput)
assert manual(PSFDCD.atoms.dihedrals, testinput) == set(
PSFDCD.atoms.dihedrals.atomgroup_intersection(
testinput, strict=True
)
)
def test_add_TopologyGroups(self, res1, res2, PSFDCD):
res1_tg = res1.atoms.bonds.selectBonds(("23", "3"))
res2_tg = res2.atoms.bonds.selectBonds(("23", "3"))
combined_tg = res1_tg + res2_tg # add tgs together
assert len(combined_tg) == 10
big_tg = PSFDCD.atoms.bonds.selectBonds(("23", "3"))
big_tg += combined_tg # try and add some already included bonds
assert len(big_tg) == 494 # check len doesn't change
def test_add_empty_to_TG(self, PSFDCD):
tg1 = PSFDCD.bonds[10:15]
tg2 = PSFDCD.bonds[:0] # empty
tg3 = tg1 + tg2
assert tg1 == tg3
def test_add_TO_to_empty_TG(self, PSFDCD):
tg1 = PSFDCD.bonds[:0] # empty
to = PSFDCD.bonds[5]
tg3 = tg1 + to
assert_equal(tg3.indices, to.indices[None, :])
def test_add_TG_to_empty_TG(self, PSFDCD):
tg1 = PSFDCD.bonds[:0] # empty
tg2 = PSFDCD.bonds[5:7]
tg3 = tg1 + tg2
assert tg2 == tg3
def test_add_singleitem(self, PSFDCD):
tg = PSFDCD.atoms.bonds[:10]
to = PSFDCD.atoms.bonds[55]
assert len(tg + to) == 11
def test_add_wrongtype_TopologyGroup(self, PSFDCD):
tg = PSFDCD.atoms.bonds[:10] # TG of bonds
ang = PSFDCD.atoms.angles[10] # single angle
angg = PSFDCD.atoms.angles[:10] # TG of angles
for other in [ang, angg]:
with pytest.raises(TypeError):
this = tg + other
def test_bad_add_TopologyGroup(self, PSFDCD):
tg = PSFDCD.atoms.bonds[:10] # TopologyGroup
ag = PSFDCD.atoms[:10] # AtomGroup
with pytest.raises(TypeError):
this = tg + ag
def test_TG_getitem_single(self, PSFDCD):
tg = PSFDCD.atoms.bonds[:10]
bondlist = list(tg)
bond = tg[0]
assert bond == bondlist[0]
def test_TG_getitem_slice(self, PSFDCD):
tg = PSFDCD.atoms.bonds[:10]
tg2 = tg[1:4]
assert_equal(tg2.indices, tg.indices[1:4])
def test_TG_getitem_fancy(self, PSFDCD):
tg = PSFDCD.atoms.bonds[:10]
tg2 = tg[[1, 4, 5]]
manual = TopologyGroup(tg.indices[[1, 4, 5]], tg.universe, tg.btype)
assert list(tg2) == list(manual)
def test_TG_getitem_bool(self, PSFDCD):
# Issue #282
sel = np.array([True, False, True])
tg = PSFDCD.atoms.bonds[:3]
tg2 = tg[sel]
assert len(tg2) == 2
for b in [tg[0], tg[2]]:
assert b in tg2
def test_TG_getitem_bool_IE(self, PSFDCD):
sel = []
tg = PSFDCD.atoms.bonds[10:13]
tg2 = tg[sel]
assert len(tg2) == 0
# atomX access
def test_atom1(self, PSFDCD):
tg = PSFDCD.bonds[:5]
a1 = tg.atom1
assert len(tg) == len(a1)
for atom, bond in zip(a1, tg):
assert atom == bond[0]
def test_atom2(self, PSFDCD):
tg = PSFDCD.bonds[:5]
a2 = tg.atom2
assert len(tg) == len(a2)
for atom, bond in zip(a2, tg):
assert atom == bond[1]
def test_atom3_IE(self, PSFDCD):
tg = PSFDCD.bonds[:5]
with pytest.raises(IndexError):
tg.atom3
def test_atom3(self, PSFDCD):
tg = PSFDCD.angles[:5]
a3 = tg.atom3
assert len(tg) == len(a3)
for atom, bond in zip(a3, tg):
assert atom == bond[2]
def test_atom4_IE(self, PSFDCD):
tg = PSFDCD.bonds[:5]
with pytest.raises(IndexError):
tg.atom4
def test_atom4(self, PSFDCD):
tg = PSFDCD.dihedrals[:5]
a4 = tg.atom4
assert len(tg) == len(a4)
for atom, bond in zip(a4, tg):
assert atom == bond[3]
class TestTopologyGroup_Cython(object):
"""
Check that the shortcut to all cython functions:
- work (return proper values)
- catch errors
"""
@staticmethod
@pytest.fixture
def bgroup(PSFDCD):
return PSFDCD.atoms[:5].bonds
@staticmethod
@pytest.fixture
def agroup(PSFDCD):
return PSFDCD.atoms[:5].angles
@staticmethod
@pytest.fixture
def dgroup(PSFDCD):
return PSFDCD.atoms[:5].dihedrals
@staticmethod
@pytest.fixture
def igroup(PSFDCD):
return PSFDCD.atoms[:5].impropers
# bonds
def test_wrong_type_bonds(self, agroup, dgroup, igroup):
for tg in [agroup, dgroup, igroup]:
with pytest.raises(TypeError):
tg.bonds()
def test_right_type_bonds(self, bgroup, PSFDCD):
assert_equal(
bgroup.bonds(),
calc_bonds(bgroup.atom1.positions, bgroup.atom2.positions),
)
assert_equal(
bgroup.bonds(pbc=True),
calc_bonds(
bgroup.atom1.positions,
bgroup.atom2.positions,
box=PSFDCD.dimensions,
),
)
assert_equal(
bgroup.values(),
calc_bonds(bgroup.atom1.positions, bgroup.atom2.positions),
)
assert_equal(
bgroup.values(pbc=True),
calc_bonds(
bgroup.atom1.positions,
bgroup.atom2.positions,
box=PSFDCD.dimensions,
),
)
# angles
def test_wrong_type_angles(self, bgroup, dgroup, igroup):
for tg in [bgroup, dgroup, igroup]:
with pytest.raises(TypeError):
tg.angles()
def test_right_type_angles(self, agroup, PSFDCD):
assert_equal(
agroup.angles(),
calc_angles(
agroup.atom1.positions,
agroup.atom2.positions,
agroup.atom3.positions,
),
)
assert_equal(
agroup.angles(pbc=True),
calc_angles(
agroup.atom1.positions,
agroup.atom2.positions,
agroup.atom3.positions,
box=PSFDCD.dimensions,
),
)
assert_equal(
agroup.values(),
calc_angles(
agroup.atom1.positions,
agroup.atom2.positions,
agroup.atom3.positions,
),
)
assert_equal(
agroup.values(pbc=True),
calc_angles(
agroup.atom1.positions,
agroup.atom2.positions,
agroup.atom3.positions,
box=PSFDCD.dimensions,
),
)
# dihedrals & impropers
def test_wrong_type_dihedrals(self, bgroup, agroup):
for tg in [bgroup, agroup]:
with pytest.raises(TypeError):
tg.dihedrals()
def test_right_type_dihedrals(self, dgroup, PSFDCD):
assert_equal(
dgroup.dihedrals(),
calc_dihedrals(
dgroup.atom1.positions,
dgroup.atom2.positions,
dgroup.atom3.positions,
dgroup.atom4.positions,
),
)
assert_equal(
dgroup.dihedrals(pbc=True),
calc_dihedrals(
dgroup.atom1.positions,
dgroup.atom2.positions,
dgroup.atom3.positions,
dgroup.atom4.positions,
box=PSFDCD.dimensions,
),
)
assert_equal(
dgroup.values(),
calc_dihedrals(
dgroup.atom1.positions,
dgroup.atom2.positions,
dgroup.atom3.positions,
dgroup.atom4.positions,
),
)
assert_equal(
dgroup.values(pbc=True),
calc_dihedrals(
dgroup.atom1.positions,
dgroup.atom2.positions,
dgroup.atom3.positions,
dgroup.atom4.positions,
box=PSFDCD.dimensions,
),
)
def test_right_type_impropers(self, igroup, PSFDCD):
assert_equal(
igroup.dihedrals(),
calc_dihedrals(
igroup.atom1.positions,
igroup.atom2.positions,
igroup.atom3.positions,
igroup.atom4.positions,
),
)
assert_equal(
igroup.dihedrals(pbc=True),
calc_dihedrals(
igroup.atom1.positions,
igroup.atom2.positions,
igroup.atom3.positions,
igroup.atom4.positions,
box=PSFDCD.dimensions,
),
)
assert_equal(
igroup.values(),
calc_dihedrals(
igroup.atom1.positions,
igroup.atom2.positions,
igroup.atom3.positions,
igroup.atom4.positions,
),
)
assert_equal(
igroup.values(pbc=True),
calc_dihedrals(
igroup.atom1.positions,
igroup.atom2.positions,
igroup.atom3.positions,
igroup.atom4.positions,
box=PSFDCD.dimensions,
),
)
def test_bond_length_pbc():
u = mda.Universe(TRZ_psf, TRZ)
ref = u.bonds[0].length()
# move an atom a box width in all dimensions
u.atoms[0].position += u.dimensions[:3]
assert_almost_equal(ref, u.bonds[0].length(pbc=True), decimal=6)
def test_cross_universe_eq():
u1 = mda.Universe(PSF)
u2 = mda.Universe(PSF)
assert not (u1.bonds[0] == u2.bonds[0])
def test_zero_size_TG_indices_bonds():
u = mda.Universe.empty(10)
u.add_TopologyAttr("bonds", values=[(1, 2), (2, 3)])
ag = u.atoms[[0]]
idx = ag.bonds.to_indices()
assert idx.shape == (0, 2)
assert idx.dtype == np.int32
def test_zero_size_TG_indices_angles():
u = mda.Universe.empty(10)
u.add_TopologyAttr("angles", values=[(1, 2, 3), (2, 3, 4)])
ag = u.atoms[[0]]
idx = ag.angles.to_indices()
assert idx.shape == (0, 3)
assert idx.dtype == np.int32
|