1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import numpy as np
import MDAnalysis as mda
from MDAnalysis.core import topologyattrs
from MDAnalysis.lib.mdamath import triclinic_box
from MDAnalysis.lib.distances import transform_RtoS
def assert_in_box(positions, box):
"""Asserts that all `positions` are strictly within the primary periodic
image as defined by `box`
"""
relpos = transform_RtoS(positions, box)
assert np.all((relpos >= 0.0) & (relpos < 1.0))
class UnWrapUniverse(object):
"""A Universe containing small molecule clusters with molecules (as well as
clusters) broken or whole accross periodic boundaries:
The universe comprises 47 atoms in 12 molecules:
* Three "molecules" (type A) containing a single atom:
1. within the central image
2. in a neighboring image
3. in an image two boxes away from the central image
* Four molecules (type B) containing three atoms:
4. within the central image
5. in the corner of the box, close to 4., broken accross one boundary
but whole accross another
6. outside the box, broken diagonally accross two neighboring images,
close to 5.
7. whole accross a boundary opposite to the location of 4., i.e.,
close to 4. in terms of PBC
* Two cyclical molecules (type C) containing four atoms:
8. broken accross the front/back but whole accross the top face
9. within the central image close to the front and bottom face, close
to 8. in terms of PBC
* Three linear chain molecules (type D) containing 8 atoms, spanning
more than half a box length:
10. within the central image relatively close to the top boundary
11. close to 10, broken mid-molecule accross the left/right boundary
12. close to 11. but in another image, whole accross the same
boundary as 11. but not mid-molecule
There are 15 residues in the universe:
Molecules of type A, B, and C each have a single residue, while each of
the chain molecules of type D have two residues with 4 atoms per residue.
Atoms can be selected by their residue's resname. For molecules of type
A, B, and C, the resnames are A, B, and C, respectively. Molecules of
type D have the resnames D1 and D2.
Atoms can also be selected by their moltype attribute, which is identical
to the corresponding molecule type (A, B, C, D).
The molecules/residues are contained in 6 segments, whereof the first
three segments contain all molecules of type A, B, or C, respectively.
Each of the remaining three segments contain a molecule of type D.
A projection onto the x-z plane of box (orthorhombic case) looks roughly
like this::
: :
: :
6 : 8 : :
- + - -:+-------+----------:- - - - - - - - - -: -
|5 8 | :
| | :
| (10) | :
| o-o-o-o-x-x-x-x | :
+x-x-x-x o-o-o-o+ :
| (11) | :
| | :
| 1 | 2 : 3
| | :
| 9 | :
| 4 ! 7| :
| ! 9 !| :
| 4-4 7+7 :
| | :
5+5 | :
- + - -:+------------------:- - - - - - - - - -: -
6-6 : : :
: :
: :
: :
: (12) :
: x-x-x-x-o-o+o-o
: :
Note that the cyclic structures of molecules 8 and 9 lie in the x-y plane
and are therefore not fully visible in the x-z plane projection.
Parameters
----------
have_bonds : bool, optional
If ``True``, intramolecular bonds will be present in the topology.
If ``False``, there will be no bond information.
have_masses : bool, optional
If ``True``, each atom will be assigned a mass of 1 u.
If ``False``, masses won't be present in the topology.
have_molnums : bool, optional
If ``True``, the topology will have molecule information (molnums).
If ``False``, that information will be missing.
have_charges : bool, optional
If ``False``, charges won't be present in the topology.
If ``True``, atoms will carry the following charges::
* atoms of molecule type A: 2 (total: 6)
* atoms of molecule type B: -0.5 (total: -6)
* atoms of molecule type C: -1.5 (total: -12)
* atoms of molecule type D: 0.5 (total: 12)
is_triclinic : bool, optional
If ``False``, the box will be a cube with an edge length of 10 Angstrom.
If ``True``, the cubic box will be sheared by 1 Angstrom in the x and
y directions.
"""
def __new__(
cls,
have_bonds=True,
have_masses=True,
have_molnums=True,
have_charges=True,
is_triclinic=False,
):
# box:
a = 10.0 # edge length
tfac = 0.1 # factor for box vector shift of triclinic boxes (~84°)
if is_triclinic:
box = triclinic_box(
[a, 0.0, 0.0], [a * tfac, a, 0.0], [a * tfac, a * tfac, a]
)
else:
box = np.array([a, a, a, 90.0, 90.0, 90.0], dtype=np.float32)
# number of atoms, residues, and segments:
n_atoms = 47
n_residues = 15
n_segments = 6
# resindices:
residx = np.empty(n_atoms, dtype=np.int64)
# type A
rix = 0
for i in range(0, 3, 1):
residx[i] = rix
rix += 1
# type B
for i in range(3, 15, 3):
residx[i : i + 3] = rix
rix += 1
# type C & D
for i in range(15, 47, 4):
residx[i : i + 4] = rix
rix += 1
# segindices:
segidx = np.empty(n_residues, dtype=np.int64)
segidx[0:3] = 0
segidx[3:7] = 1
segidx[7:9] = 2
segidx[9:11] = 3
segidx[11:13] = 4
segidx[13:15] = 5
# universe:
u = mda.Universe.empty(
# topology things
n_atoms=n_atoms,
n_residues=n_residues,
n_segments=n_segments,
atom_resindex=residx,
residue_segindex=segidx,
# trajectory things
trajectory=True,
velocities=False,
forces=False,
)
# resnames: we always want those for selection purposes
resnames = ["A"] * 3
resnames += ["B"] * 4
resnames += ["C"] * 2
resnames += ["D1", "D2"] * 3
u.add_TopologyAttr(topologyattrs.Resnames(resnames))
# moltypes: we always want those for selection purposes
moltypes = ["A"] * 3
moltypes += ["B"] * 4
moltypes += ["C"] * 2
moltypes += ["D"] * 6
u.add_TopologyAttr(topologyattrs.Moltypes(moltypes))
# trajectory:
ts = u.trajectory.ts
ts.frame = 0
ts.dimensions = box
# positions:
relpos = np.empty((n_atoms, 3), dtype=np.float32)
# type A
relpos[0:3, :] = np.array(
[[0.5, 0.5, 0.5], [1.4, 0.5, 0.5], [2.1, 0.5, 0.5]],
dtype=np.float32,
)
# type B
relpos[3:15, :] = np.array(
[
[0.1, 0.1, 0.2],
[0.1, 0.1, 0.1],
[0.2, 0.1, 0.1],
[-0.05, 0.2, 0.05],
[0.05, 0.2, 0.05],
[0.05, 0.2, 0.95],
[-0.2, -0.9, 1.05],
[-0.2, 0.1, -0.05],
[-0.1, 0.1, -0.05],
[0.95, 0.2, 0.25],
[0.95, 0.2, 0.15],
[1.05, 0.2, 0.15],
],
dtype=np.float32,
)
# type C
relpos[15:23, :] = np.array(
[
[0.4, 0.95, 1.05],
[0.4, 0.95, 0.95],
[0.4, 0.05, 0.95],
[0.4, 0.05, 1.05],
[0.6, 0.05, 0.25],
[0.6, 0.05, 0.15],
[0.6, 0.15, 0.15],
[0.6, 0.15, 0.25],
],
dtype=np.float32,
)
# type D
relpos[23:47, :] = np.array(
[
[0.2, 0.7, 0.8],
[0.3, 0.7, 0.8],
[0.4, 0.7, 0.8],
[0.5, 0.7, 0.8],
[0.6, 0.7, 0.8],
[0.7, 0.7, 0.8],
[0.8, 0.7, 0.8],
[0.9, 0.7, 0.8],
[0.66, 0.75, 0.7],
[0.76, 0.75, 0.7],
[0.86, 0.75, 0.7],
[0.96, 0.75, 0.7],
[0.06, 0.75, 0.7],
[0.16, 0.75, 0.7],
[0.26, 0.75, 0.7],
[0.36, 0.75, 0.7],
[1.14, 0.65, -0.4],
[1.04, 0.65, -0.4],
[0.94, 0.65, -0.4],
[0.84, 0.65, -0.4],
[0.74, 0.65, -0.4],
[0.64, 0.65, -0.4],
[0.54, 0.65, -0.4],
[0.44, 0.65, -0.4],
],
dtype=np.float32,
)
# make a copy, we need the original later
_relpos = relpos.copy()
# apply y- and z-dependent shift of x and y coords for triclinic boxes:
if is_triclinic:
# x-coord shift depends on y- and z-coords
_relpos[:, 0] += tfac * _relpos[:, 1:].sum(axis=1)
# y-coord shift depends on z-coords only
_relpos[:, 1] += tfac * _relpos[:, 2]
# scale relative to absolute positions:
ts.positions = (_relpos * np.array([a, a, a])).astype(np.float32)
# bonds:
if have_bonds:
bonds = []
# type A has no bonds
# type B
for base in range(3, 15, 3):
for i in range(2):
bonds.append((base + i, base + i + 1))
# type C
for base in range(15, 23, 4):
for i in range(3):
bonds.append((base + i, base + i + 1))
bonds.append((0 + base, 3 + base))
# type D
for base in range(23, 47, 8):
for i in range(7):
bonds.append((base + i, base + i + 1))
u.add_TopologyAttr(topologyattrs.Bonds(bonds))
# masses:
if have_masses:
# masses are all set to 1 so that one can cross-check the results of
# reference='com' with reference='cog' unwrapping
masses = np.ones(n_atoms)
u.add_TopologyAttr(topologyattrs.Masses(masses))
# molnums:
if have_molnums:
molnums = [0, 1, 2]
molnums += [3, 4, 5, 6]
molnums += [7, 8]
molnums += [9, 9, 10, 10, 11, 11]
u.add_TopologyAttr(topologyattrs.Molnums(molnums))
# charges:
if have_charges:
# type A
charges = [2] * 3
# type B
charges += [-0.5] * 12
# type C
charges += [-1.5] * 8
# type C
charges += [0.5] * 24
u.add_TopologyAttr(topologyattrs.Charges(charges))
# shamelessly monkey-patch some custom universe attributes:
u._is_triclinic = is_triclinic
u._relpos = relpos
u._tfac = tfac
u._box_edge = a
# bind custom methods to universe:
u.unwrapped_coords = cls.unwrapped_coords.__get__(u)
u.wrapped_coords = cls.wrapped_coords.__get__(u)
u.center = cls.center.__get__(u)
return u
def unwrapped_coords(self, compound, reference):
"""Returns coordinates which correspond to the unwrapped system.
Parameters
----------
compound : {'group', 'segments', 'residues', 'molecules', 'fragments'}
Which type of component is unwrapped.
reference : {'com', 'cog', None}
The reference point of each compound that is shifted into the
primary unit cell.
Note
----
This function assumes that all atom masses are equal. Therefore, the
returned coordinates for ``reference='com'`` and ``reference='cog'`` are
identical.
"""
if reference is not None:
ref = reference.lower()
if ref not in ["com", "cog"]:
raise ValueError(
"Unknown unwrap reference: {}" "".format(reference)
)
comp = compound.lower()
if comp not in [
"group",
"segments",
"residues",
"molecules",
"fragments",
]:
raise ValueError("Unknown unwrap compound: {}".format(compound))
# get relative positions:
relpos = self._relpos.copy()
# type B
# molecule 5, atom 2 & molecule 6, atom 1 & 2
relpos[8, :] = [0.05, 0.2, -0.05]
relpos[10, :] = [-0.2, -0.9, 0.95]
relpos[11, :] = [-0.1, -0.9, 0.95]
# type C
# molecule 8, atoms 2 & 3
relpos[17, :] = [0.4, 1.05, 0.95]
relpos[18, :] = [0.4, 1.05, 1.05]
# type D
# molecule 11, residue 1
relpos[35:39, :] = np.array(
[
[1.06, 0.75, 0.7],
[1.16, 0.75, 0.7],
[1.26, 0.75, 0.7],
[1.36, 0.75, 0.7],
],
dtype=np.float32,
)
# apply image shifts if necessary:
if reference is None:
if comp == "residues":
# second residue of molecule 11
relpos[35:39, :] = np.array(
[
[0.06, 0.75, 0.7],
[0.16, 0.75, 0.7],
[0.26, 0.75, 0.7],
[0.36, 0.75, 0.7],
],
dtype=np.float32,
)
else:
# molecule 2 & 3
relpos[1:3, :] = np.array(
[[0.4, 0.5, 0.5], [0.1, 0.5, 0.5]], dtype=np.float32
)
# molecule 6
relpos[9:12, :] = np.array(
[[0.8, 0.1, 1.05], [0.8, 0.1, 0.95], [0.9, 0.1, 0.95]],
dtype=np.float32,
)
# molecule 8
relpos[15:19, :] = np.array(
[
[0.4, -0.05, 0.05],
[0.4, -0.05, -0.05],
[0.4, 0.05, -0.05],
[0.4, 0.05, 0.05],
],
dtype=np.float32,
)
if comp == "residues":
# molecule 11, residue 1 & molecule 12
relpos[35:47, :] = np.array(
[
[0.06, 0.75, 0.7],
[0.16, 0.75, 0.7],
[0.26, 0.75, 0.7],
[0.36, 0.75, 0.7],
[1.14, 0.65, 0.6],
[1.04, 0.65, 0.6],
[0.94, 0.65, 0.6],
[0.84, 0.65, 0.6],
[0.74, 0.65, 0.6],
[0.64, 0.65, 0.6],
[0.54, 0.65, 0.6],
[0.44, 0.65, 0.6],
],
dtype=np.float32,
)
else:
# molecule 11 & 12
relpos[31:47, :] = np.array(
[
[-0.34, 0.75, 0.7],
[-0.24, 0.75, 0.7],
[-0.14, 0.75, 0.7],
[-0.04, 0.75, 0.7],
[0.06, 0.75, 0.7],
[0.16, 0.75, 0.7],
[0.26, 0.75, 0.7],
[0.36, 0.75, 0.7],
[1.14, 0.65, 0.6],
[1.04, 0.65, 0.6],
[0.94, 0.65, 0.6],
[0.84, 0.65, 0.6],
[0.74, 0.65, 0.6],
[0.64, 0.65, 0.6],
[0.54, 0.65, 0.6],
[0.44, 0.65, 0.6],
],
dtype=np.float32,
)
# apply y- and z-dependent shift of x and y coords for triclinic boxes:
if self._is_triclinic:
# x-coord shift depends on y- and z-coords
relpos[:, 0] += self._tfac * relpos[:, 1:].sum(axis=1)
# y-coord shift depends on z-coords only
relpos[:, 1] += self._tfac * relpos[:, 2]
# scale relative to absolute positions:
a = self._box_edge
positions = relpos * np.array([a, a, a])
return positions.astype(np.float32)
def wrapped_coords(self, compound, center):
"""Returns coordinates which correspond to the wrapped system.
Parameters
----------
compound : {'atoms', 'group', 'segments', 'residues', 'molecules', \
'fragments'}
Which type of component is unwrapped. Note that for ``'group'``,
the result will only be correct *if the group is the entire system*.
center : {'com', 'cog'}
The reference point of each compound that is shifted into the
primary unit cell.
Note
----
This function assumes that all atom masses are equal. Therefore, the
returned coordinates for ``center='com'`` and ``center='cog'`` are
identical.
"""
ctr = center.lower()
if ctr not in ["com", "cog"]:
raise ValueError("Unknown unwrap reference: {}".format(center))
comp = compound.lower()
if comp not in [
"atoms",
"group",
"segments",
"residues",
"molecules",
"fragments",
]:
raise ValueError("Unknown unwrap compound: {}".format(compound))
# wrapped relative positions:
relpos = self._relpos.copy()
# apply required box shifts:
if comp == "atoms":
# type A
# type A
# molecule 2: negative x-shift
relpos[1, 0] -= 1.0
# molecule 2: negative double x-shift
relpos[2, 0] -= 2.0
# type B
# molecule 5, atom 0: positive x-shift
relpos[6, 0] += 1.0
# molecule 6, atom 0: positive x- and y-shift and negative z-shift
relpos[9, :] += [1.0, 1.0, -1.0]
# molecule 6, atom 2 & 3: positive x- and z-shift
relpos[10:12, :] += [1.0, 0.0, 1.0]
# molecule 7, atom 2: negative x-shift
relpos[14, 0] -= 1.0
# type C
# molecule 8, atoms 0 & 3: negative z-shift
relpos[15, 2] -= 1.0
relpos[18, 2] -= 1.0
# type D
# molecule 12, atoms 0 & 1: negative x-shift
relpos[39:41, 0] -= 1.0
# molecule 12: positive z-shift
relpos[39:47, 2] += 1.0
elif comp == "group":
# com or cog of entire system is within box, so no shift
pass
elif comp == "segments":
# type A
# molecules 1-3: negative x-shift
relpos[0:3, 0] -= 1.0
# type D
# molecule 12: positive z-shift
relpos[39:47, 2] += 1.0
else: # comp is residues, molecules, or fragments
# type A
# molecule 2: negative x-shift
relpos[1, 0] -= 1.0
# molecule 2: negative double x-shift
relpos[2, 0] -= 2.0
# type B
# molecule 6: positive x- and y-shift
relpos[9:12, :2] += 1.0
# type C
# molecule 8: negative z-shift
relpos[15:19, 2] -= 1.0
# type D
# molecule 12: positive z-shift
relpos[39:47, 2] += 1.0
# apply y- and z-dependent shift of x and y coords for triclinic boxes:
if self._is_triclinic:
# x-coord shift depends on y- and z-coords
relpos[:, 0] += self._tfac * relpos[:, 1:].sum(axis=1)
# y-coord shift depends on z-coords only
relpos[:, 1] += self._tfac * relpos[:, 2]
# scale relative to absolute positions:
a = self._box_edge
positions = relpos * np.array([a, a, a])
return positions.astype(np.float32)
def center(self, compound):
"""Returns centers which correspond to the unwrapped system.
Parameters
----------
compound : {'atoms', 'group', 'segments', 'residues', 'molecules', \
'fragments'}
Which type of component is unwrapped. Note that for ``'group'``,
the result will only be correct *if the group is the entire system*.
Note
----
This function assumes that all atom masses are equal. Therefore, the
returned coordinates for ``center='com'`` and ``center='cog'`` are
identical.
"""
relpos = self.unwrapped_coords(compound, reference=None)
comp = compound.lower()
if comp not in [
"group",
"segments",
"residues",
"molecules",
"fragments",
]:
raise ValueError("Unknown unwrap compound: {}".format(compound))
pos = 0
if compound == "residues":
center_pos = np.zeros((15, 3), dtype=np.float32)
else:
center_pos = np.zeros((12, 3), dtype=np.float32)
for base in range(3):
loc_center = relpos[base, :]
center_pos[pos, :] = loc_center
pos += 1
for base in range(3, 15, 3):
loc_center = np.mean(relpos[base : base + 3, :], axis=0)
center_pos[pos, :] = loc_center
pos += 1
if compound == "residues":
for base in range(15, 47, 4):
loc_center = np.mean(relpos[base : base + 4, :], axis=0)
center_pos[pos, :] = loc_center
pos += 1
else:
for base in range(15, 23, 4):
loc_center = np.mean(relpos[base : base + 4, :], axis=0)
center_pos[pos, :] = loc_center
pos += 1
for base in range(23, 47, 8):
loc_center = np.mean(relpos[base : base + 8, :], axis=0)
center_pos[pos, :] = loc_center
pos += 1
if compound == "group":
center_pos = center_pos[11]
elif compound == "segments":
center_pos = center_pos[9:]
return center_pos
|