File: test_cutil.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (105 lines) | stat: -rw-r--r-- 3,233 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import pytest
import numpy as np
from numpy.testing import assert_equal

from MDAnalysis.lib._cutil import (
    unique_int_1d,
    find_fragments,
    _in2d,
)


@pytest.mark.parametrize(
    "values",
    (
        [],  # empty array
        [1, 1, 1, 1],  # all identical
        [2, 3, 5, 7],  # all different, monotonic
        [5, 2, 7, 3],  # all different, non-monotonic
        [1, 2, 2, 4, 4, 6],  # duplicates, monotonic
        [1, 2, 2, 6, 4, 4],  # duplicates, non-monotonic
    ),
)
def test_unique_int_1d(values):
    array = np.array(values, dtype=np.intp)
    ref = np.unique(array)
    res = unique_int_1d(array)
    assert_equal(res, ref)
    assert type(res) == type(ref)
    assert res.dtype == ref.dtype


@pytest.mark.parametrize(
    "edges,ref",
    [
        ([[0, 1], [1, 2], [2, 3], [3, 4]], [[0, 1, 2, 3, 4]]),  # linear chain
        (
            [[0, 1], [1, 2], [2, 3], [3, 4], [4, 10]],
            [[0, 1, 2, 3, 4]],
        ),  # unused edge (4, 10)
        ([[0, 1], [1, 2], [2, 3]], [[0, 1, 2, 3], [4]]),  # lone atom
        (
            [[0, 1], [1, 2], [2, 0], [3, 4], [4, 3]],
            [[0, 1, 2], [3, 4]],
        ),  # circular
    ],
)
def test_find_fragments(edges, ref):
    atoms = np.arange(5)

    fragments = find_fragments(atoms, edges)

    assert len(fragments) == len(ref)
    for frag, r in zip(fragments, ref):
        assert_equal(frag, r)


def test_in2d():
    arr1 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.intp)
    arr2 = np.array([[3, 4], [2, 1], [5, 5], [6, 6]], dtype=np.intp)

    result = _in2d(arr1, arr2)

    assert_equal(result, np.array([False, True, False]))


@pytest.mark.parametrize(
    "arr1,arr2",
    [
        (
            np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.intp),
            np.array([[1, 2], [3, 4]], dtype=np.intp),
        ),
        (
            np.array([[1, 2], [3, 4]], dtype=np.intp),
            np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.intp),
        ),
    ],
)
def test_in2d_VE(arr1, arr2):
    with pytest.raises(
        ValueError, match=r"Both arrays must be \(n, 2\) arrays"
    ):
        _in2d(arr1, arr2)