1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2018 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import os
import pytest
from collections import defaultdict, Counter
from numpy.testing import assert_equal, assert_allclose
import numpy as np
import MDAnalysis as mda
from MDAnalysisTests.datafiles import (
GRO,
Martini_membrane_gro,
PDB,
PDB_xvf,
SURFACE_PDB,
SURFACE_TRR,
)
from MDAnalysis.lib import nsgrid
from MDAnalysis.transformations.translate import center_in_box
@pytest.fixture
def universe():
u = mda.Universe(GRO)
return u
def run_grid_search(u, ref_id, cutoff=3):
coords = u.atoms.positions
searchcoords = u.atoms.positions[ref_id]
if searchcoords.shape == (3,):
searchcoords = searchcoords[None, :]
# Run grid search
searcher = nsgrid.FastNS(cutoff, coords, box=u.dimensions)
return searcher.search(searchcoords)
@pytest.mark.parametrize(
"box",
[
np.zeros(3), # Bad shape
np.zeros((3, 3)), # Collapsed box
np.array([[0, 0, 0], [0, 1, 0], [0, 0, 1]]), # 2D box
np.array(
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
), # Box provided as array of integers
np.array(
[[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float64
), # Box provided as array of double
],
)
def test_pbc_box(box):
"""Check that PBC box accepts only well-formated boxes"""
coords = np.array([[1.0, 1.0, 1.0]], dtype=np.float32)
with pytest.raises(ValueError):
nsgrid.FastNS(4.0, coords, box=box)
@pytest.mark.parametrize(
"cutoff, match",
(
(-4, "Cutoff must be positive"),
(100000, "Cutoff 100000 too large for box"),
),
)
def test_nsgrid_badcutoff(universe, cutoff, match):
with pytest.raises(ValueError, match=match):
run_grid_search(universe, 0, cutoff)
def test_ns_grid_noneighbor(universe):
"""Check that grid search returns empty lists/arrays when there is no neighbors"""
ref_id = 0
cutoff = 0.5
results_grid = run_grid_search(universe, ref_id, cutoff)
# same indices will be selected as neighbour here
assert len(results_grid.get_pairs()) == 1
assert len(results_grid.get_pair_distances()) == 1
def test_nsgrid_PBC_rect():
"""Check that nsgrid works with rect boxes and PBC"""
ref_id = 191
# Atomid are from gmx select so there start from 1 and not 0. hence -1!
results = (
np.array(
[
191,
192,
672,
682,
683,
684,
995,
996,
2060,
2808,
3300,
3791,
3792,
]
)
- 1
)
universe = mda.Universe(Martini_membrane_gro)
cutoff = 7
# FastNS is called differently to max coverage
searcher = nsgrid.FastNS(
cutoff, universe.atoms.positions, box=universe.dimensions
)
results_grid = searcher.search(
universe.atoms.positions[ref_id][None, :]
).get_pairs()
other_ix = sorted(i for (_, i) in results_grid)
assert len(results) == len(results_grid)
assert other_ix == sorted(results)
def test_nsgrid_PBC(universe):
"""Check that grid search works when PBC is needed"""
# Atomid are from gmx select so there start from 1 and not 0. hence -1!
ref_id = 13937
results = (
np.array(
[
4398,
4401,
13938,
13939,
13940,
13941,
17987,
23518,
23519,
23521,
23734,
47451,
]
)
- 1
)
results_grid = run_grid_search(universe, ref_id).get_pairs()
other_ix = sorted(i for (_, i) in results_grid)
assert len(results) == len(other_ix)
assert other_ix == sorted(results)
def test_nsgrid_pairs(universe):
"""Check that grid search returns the proper pairs"""
ref_id = 13937
neighbors = (
np.array(
[
4398,
4401,
13938,
13939,
13940,
13941,
17987,
23518,
23519,
23521,
23734,
47451,
]
)
- 1
) # Atomid are from gmx select so there start from 1 and not 0. hence -1!
results = []
results = np.array(results)
results_grid = run_grid_search(universe, ref_id).get_pairs()
assert_equal(
np.sort(neighbors, axis=0), np.sort(results_grid[:, 1], axis=0)
)
def test_nsgrid_pair_distances(universe):
"""Check that grid search returns the proper pair distances"""
ref_id = 13937
results = (
np.array(
[
0.0,
0.270,
0.285,
0.096,
0.096,
0.015,
0.278,
0.268,
0.179,
0.259,
0.290,
0.270,
]
)
* 10
) # These distances where obtained by gmx distance so they are in nm
results_grid = run_grid_search(universe, ref_id).get_pair_distances()
assert_allclose(np.sort(results), np.sort(results_grid), atol=1e-2)
def test_nsgrid_distances(universe):
"""Check that grid search returns the proper distances"""
# These distances where obtained by gmx distance so they are in nm
ref_id = 13937
results = (
np.array(
[
0.0,
0.270,
0.285,
0.096,
0.096,
0.015,
0.278,
0.268,
0.179,
0.259,
0.290,
0.270,
]
)
* 10
)
results_grid = run_grid_search(universe, ref_id).get_pair_distances()
assert_allclose(np.sort(results), np.sort(results_grid), atol=1e-2)
@pytest.mark.parametrize(
"box, results",
(
(None, [3, 13, 24]),
(np.array([10.0, 10.0, 10.0, 90.0, 90.0, 90.0]), [3, 13, 24, 39, 67]),
(
np.array([10.0, 10.0, 10.0, 60.0, 75.0, 90.0]),
[3, 13, 24, 39, 60, 79],
),
),
)
def test_nsgrid_search(box, results):
np.random.seed(90003)
points = (
np.random.uniform(low=0, high=1.0, size=(100, 3)) * (10.0)
).astype(np.float32)
cutoff = 2.0
query = np.array([1.0, 1.0, 1.0], dtype=np.float32).reshape((1, 3))
if box is None:
pseudobox = np.zeros(6, dtype=np.float32)
all_coords = np.concatenate([points, query])
lmax = all_coords.max(axis=0)
lmin = all_coords.min(axis=0)
pseudobox[:3] = 1.1 * (lmax - lmin)
pseudobox[3:] = 90.0
shiftpoints, shiftquery = points.copy(), query.copy()
shiftpoints -= lmin
shiftquery -= lmin
searcher = nsgrid.FastNS(cutoff, shiftpoints, box=pseudobox, pbc=False)
searchresults = searcher.search(shiftquery)
else:
searcher = nsgrid.FastNS(cutoff, points, box)
searchresults = searcher.search(query)
indices = searchresults.get_pairs()[:, 1]
assert_equal(np.sort(indices), results)
@pytest.mark.parametrize(
"box, result",
(
(None, 21),
(np.array([0.0, 0.0, 0.0, 90.0, 90.0, 90.0]), 21),
(np.array([10.0, 10.0, 10.0, 90.0, 90.0, 90.0]), 26),
(np.array([10.0, 10.0, 10.0, 60.0, 75.0, 90.0]), 33),
),
)
def test_nsgrid_selfsearch(box, result):
np.random.seed(90003)
points = (
np.random.uniform(low=0, high=1.0, size=(100, 3)) * (10.0)
).astype(np.float32)
cutoff = 1.0
if box is None or np.allclose(box[:3], 0):
# create a pseudobox
# define the max range
# and supply the pseudobox
# along with only one set of coordinates
pseudobox = np.zeros(6, dtype=np.float32)
lmax = points.max(axis=0)
lmin = points.min(axis=0)
pseudobox[:3] = 1.1 * (lmax - lmin)
pseudobox[3:] = 90.0
shiftref = points.copy()
shiftref -= lmin
searcher = nsgrid.FastNS(cutoff, shiftref, box=pseudobox, pbc=False)
searchresults = searcher.self_search()
else:
searcher = nsgrid.FastNS(cutoff, points, box=box)
searchresults = searcher.self_search()
pairs = searchresults.get_pairs()
assert_equal(len(pairs), result)
def test_nsgrid_probe_close_to_box_boundary():
# FastNS.search used to segfault with this box, cutoff and reference
# coordinate prior to PR #2136, so we ensure that this remains fixed.
# See Issue #2132 for further information.
ref = np.array([[55.783722, 44.190044, -54.16671]], dtype=np.float32)
box = np.array(
[53.785854, 43.951054, 57.17597, 90.0, 90.0, 90.0], dtype=np.float32
)
cutoff = 3.0
# search within a configuration where we know the expected outcome:
conf = np.ones((1, 3), dtype=np.float32)
searcher = nsgrid.FastNS(cutoff, conf, box)
results = searcher.search(ref)
# check if results are as expected:
expected_pairs = np.zeros((1, 2), dtype=np.int64)
expected_dists = np.array([2.3689647], dtype=np.float64)
assert_equal(results.get_pairs(), expected_pairs)
assert_allclose(results.get_pair_distances(), expected_dists, rtol=1.0e-6)
def test_zero_max_dist():
# see issue #2656
# searching with max_dist = 0.0 shouldn't cause segfault (and infinite subboxes)
ref = np.array([1.0, 1.0, 1.0], dtype=np.float32)
conf = np.array([2.0, 1.0, 1.0], dtype=np.float32)
box = np.array([10.0, 10.0, 10.0, 90.0, 90.0, 90.0], dtype=np.float32)
res = mda.lib.distances._nsgrid_capped(ref, conf, box=box, max_cutoff=0.0)
@pytest.fixture()
def u_pbc_triclinic():
u = mda.Universe(PDB)
u.dimensions = [10, 10, 10, 60, 60, 60]
return u
def test_around_res(u_pbc_triclinic):
# sanity check for issue 2656, shouldn't segfault (obviously)
ag = u_pbc_triclinic.select_atoms("around 0.0 resid 3")
assert len(ag) == 0
def test_around_overlapping():
# check that around 0.0 catches when atoms *are* superimposed
u = mda.Universe.empty(60, trajectory=True)
xyz = np.zeros((60, 3))
x = np.tile(np.arange(12), (5,)) + np.repeat(np.arange(5) * 100, 12)
# x is 5 images of 12 atoms
xyz[:, 0] = x # y and z are 0
u.load_new(xyz)
u.dimensions = [100, 100, 100, 60, 60, 60]
# Technically true but not what we're testing:
# dist = mda.lib.distances.distance_array(u.atoms[:12].positions,
# u.atoms[12:].positions,
# box=u.dimensions)
# assert np.count_nonzero(np.any(dist <= 0.0, axis=0)) == 48
assert u.select_atoms("around 0.0 index 0:11").n_atoms == 48
def test_issue_2229_part1():
# reproducing first case in GH issue 2229
u = mda.Universe.empty(2, trajectory=True)
u.dimensions = [57.45585, 50.0000, 50.0000, 90, 90, 90]
u.atoms[0].position = [0, 0, 0]
u.atoms[1].position = [55.00, 0, 0]
g = mda.lib.nsgrid.FastNS(3.0, u.atoms[[0]].positions, box=u.dimensions)
assert len(g.search(u.atoms[[1]].positions).get_pairs()) == 1
g = mda.lib.nsgrid.FastNS(3.0, u.atoms[[1]].positions, box=u.dimensions)
assert len(g.search(u.atoms[[0]].positions).get_pairs()) == 1
def test_issue_2229_part2():
u = mda.Universe.empty(2, trajectory=True)
u.dimensions = [45.0000, 55.0000, 109.8375, 90, 90, 90]
u.atoms[0].position = [0, 0, 29.29]
u.atoms[1].position = [0, 0, 28.23]
g = mda.lib.nsgrid.FastNS(
3.0, u.atoms[[0]].positions, box=u.dimensions, pbc=False
)
assert len(g.search(u.atoms[[1]].positions).get_pairs()) == 1
g = mda.lib.nsgrid.FastNS(3.0, u.atoms[[1]].positions, box=u.dimensions)
assert len(g.search(u.atoms[[0]].positions).get_pairs()) == 1
def test_issue_2919():
# regression test reported in issue 2919
# other methods will also give 1115 or 2479 results
u = mda.Universe(PDB_xvf)
ag = u.select_atoms("index 0")
u.trajectory.ts = center_in_box(ag)(u.trajectory.ts)
box = u.dimensions
reference = u.select_atoms("protein")
configuration = u.select_atoms("not protein")
for cutoff, expected in [(2.8, 1115), (3.2, 2497)]:
pairs, distances = mda.lib.distances.capped_distance(
reference.positions,
configuration.positions,
max_cutoff=cutoff,
box=box,
method="nsgrid",
return_distances=True,
)
assert len(pairs) == expected
def test_issue_2345():
# another example of NSGrid being wrong
# this is a 111 FCC slab
# coordination numbers for atoms should be either 9 or 12, 50 of each
u = mda.Universe(SURFACE_PDB, SURFACE_TRR)
g = mda.lib.nsgrid.FastNS(2.9, u.atoms.positions, box=u.dimensions)
cn = defaultdict(list)
idx = g.self_search().get_pairs()
# count number of contacts for each atom
for i, j in idx:
cn[i].append(j)
cn[j].append(i)
c = Counter(len(v) for v in cn.values())
assert c == {9: 50, 12: 50}
def test_issue_2670():
# Tests that NSGrid no longer crashes when using small box sizes
u = mda.Universe(PDB)
u.dimensions = [1e-3, 1e-3, 1e-3, 90, 90, 90]
# PDB files only have a coordinate precision of 1.0e-3, so we need to scale
# the coordinates for this test to make any sense:
u.atoms.positions = u.atoms.positions * 1.0e-3
ag1 = u.select_atoms("resid 2 3")
# should return nothing as nothing except resid 3 is within 0.0 or resid 3
assert len(ag1.select_atoms("around 0.0 resid 3")) == 0
# force atom 0 of resid 1 to overlap with atom 0 of resid 3
u.residues[0].atoms[0].position = u.residues[2].atoms[0].position
ag2 = u.select_atoms("resid 1 3")
# should return the one atom overlap
assert len(ag2.select_atoms("around 0.0 resid 3")) == 1
def high_mem_tests_enabled():
"""Returns true if ENABLE_HIGH_MEM_UNIT_TESTS is set to true."""
env = os.getenv("ENABLE_HIGH_MEM_UNIT_TESTS", default="false").lower()
if env == "true":
return True
return False
reason = (
"Turned off by default. The test can be enabled by setting "
"the ENABLE_HIGH_MEM_UNIT_TESTS "
"environment variable. Make sure you have at least 10GB of RAM."
)
# Tests that with a tiny cutoff to box ratio, the number of grids is capped
# to avoid indexing overflow. Expected results copied from test_nsgrid_search
# with no box.
@pytest.mark.skipif(not high_mem_tests_enabled(), reason=reason)
def test_issue_3183():
np.random.seed(90003)
points = (
np.random.uniform(low=0, high=1.0, size=(100, 3)) * (10.0)
).astype(np.float32)
cutoff = 2.0
query = np.array([1.0, 1.0, 1.0], dtype=np.float32).reshape((1, 3))
box = np.array([10000.0, 10000.0, 10000.0, 90.0, 90.0, 90.0])
searcher = nsgrid.FastNS(cutoff, points, box)
searchresults = searcher.search(query)
indices = searchresults.get_pairs()[:, 1]
want_results = [3, 13, 24]
assert_equal(np.sort(indices), want_results)
|