File: test_pkdtree.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (172 lines) | stat: -rw-r--r-- 5,916 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

import pytest
import numpy as np
from numpy.testing import assert_equal


from MDAnalysis.lib.pkdtree import PeriodicKDTree
from MDAnalysis.lib.distances import transform_StoR


# fractional coordinates for data points
f_dataset = np.array(
    [
        [0.2, 0.2, 0.2],  # center of the box
        [0.5, 0.5, 0.5],
        [0.11, 0.11, 0.11],
        [1.1, -1.1, 1.1],  # wrapped to [1, 9, 1]
        [2.1, 2.1, 0.3],  # wrapped to [1, 1, 3]
    ],
    dtype=np.float32,
)


@pytest.mark.parametrize(
    "b, cut, result",
    (
        (
            None,
            1.0,
            "Donot provide cutoff distance" " for non PBC aware calculations",
        ),
        (
            [10, 10, 10, 90, 90, 90],
            None,
            "Provide a cutoff distance with" " tree.set_coords(...)",
        ),
    ),
)
def test_setcoords(b, cut, result):
    coords = np.array([[1, 1, 1], [2, 2, 2]], dtype=np.float32)
    if b is not None:
        b = np.array(b, dtype=np.float32)
    tree = PeriodicKDTree(box=b)
    print(b, tree.box, cut, result)
    with pytest.raises(RuntimeError, match=result):
        tree.set_coords(coords, cutoff=cut)


def test_searchfail():
    coords = np.array([[1, 1, 1], [2, 2, 2]], dtype=np.float32)
    b = np.array([10, 10, 10, 90, 90, 90], dtype=np.float32)
    cutoff = 1.0
    search_radius = 2.0
    query = np.array([1, 1, 1], dtype=np.float32)
    tree = PeriodicKDTree(box=b)
    tree.set_coords(coords, cutoff=cutoff)
    match = "Set cutoff greater or equal to the radius."
    with pytest.raises(RuntimeError, match=match):
        tree.search(query, search_radius)


@pytest.mark.parametrize(
    "b, q, result",
    (
        ([10, 10, 10, 90, 90, 90], [0.5, -0.1, 1.1], []),
        ([10, 10, 10, 90, 90, 90], [2.1, -3.1, 0.1], [2, 3, 4]),
        ([10, 10, 10, 45, 60, 90], [2.1, -3.1, 0.1], [2, 3]),
    ),
)
def test_search(b, q, result):
    b = np.array(b, dtype=np.float32)
    q = transform_StoR(np.array(q, dtype=np.float32), b)
    cutoff = 3.0
    coords = transform_StoR(f_dataset, b)
    tree = PeriodicKDTree(box=b)
    tree.set_coords(coords, cutoff=cutoff)
    indices = tree.search(q, cutoff)
    assert_equal(indices, result)


def test_nopbc():
    cutoff = 0.3
    q = np.array([0.2, 0.3, 0.1])
    coords = f_dataset.copy()
    tree = PeriodicKDTree(box=None)
    tree.set_coords(coords)
    indices = tree.search(q, cutoff)
    assert_equal(indices, [0, 2])


@pytest.mark.parametrize(
    "b, radius, result",
    (
        ([10, 10, 10, 90, 90, 90], 2.0, [[0, 2], [0, 4], [2, 4]]),
        ([10, 10, 10, 45, 60, 90], 2.0, [[0, 4], [2, 4]]),
        (
            [10, 10, 10, 45, 60, 90],
            4.5,
            "Set cutoff greater or equal to the radius.",
        ),
        ([10, 10, 10, 45, 60, 90], 0.1, []),
    ),
)
def test_searchpairs(b, radius, result):
    b = np.array(b, dtype=np.float32)
    cutoff = 2.0
    coords = transform_StoR(f_dataset, b)
    tree = PeriodicKDTree(box=b)
    tree.set_coords(coords, cutoff=cutoff)
    if cutoff < radius:
        with pytest.raises(RuntimeError, match=result):
            indices = tree.search_pairs(radius)
    else:
        indices = tree.search_pairs(radius)
        assert_equal(len(indices), len(result))


@pytest.mark.parametrize("radius, result", ((0.1, []), (0.3, [[0, 2]])))
def test_ckd_searchpairs_nopbc(radius, result):
    coords = f_dataset.copy()
    tree = PeriodicKDTree()
    tree.set_coords(coords)
    indices = tree.search_pairs(radius)
    assert_equal(indices, result)


# fmt: off
@pytest.mark.parametrize('b, q, result', (
                         ([10, 10, 10, 90, 90, 90], [0.5, -0.1, 1.1], []),
                         ([10, 10, 10, 90, 90, 90], [2.1, -3.1, 0.1], [[0, 2],
                                                                       [0, 3],
                                                                       [0, 4]]),
                         ([10, 10, 10, 90, 90, 90], [[2.1, -3.1, 0.1],
                                                     [0.5, 0.5, 0.5]], [[0, 2],
                                                                        [0, 3],
                                                                        [0, 4],
                                                                        [1, 1]]),
                         ([10, 10, 10, 45, 60, 90], [2.1, -3.1, 0.1], [[0, 2],
                                                                       [0, 3]])
                         ))
# fmt: on
def test_searchtree(b, q, result):
    b = np.array(b, dtype=np.float32)
    cutoff = 3.0
    coords = transform_StoR(f_dataset, b)
    q = transform_StoR(np.array(q, dtype=np.float32), b)
    tree = PeriodicKDTree(box=b)
    tree.set_coords(coords, cutoff=cutoff)
    pairs = tree.search_tree(q, cutoff)
    assert_equal(pairs, result)