1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
:Author: Joshua L. Adelman, University of Pittsburgh
:Contact: jla65@pitt.edu
Sample code to use the routine for fast RMSD & rotational matrix calculation.
For the example provided below, the minimum least-squares RMSD for the two
7-atom fragments should be 0.719106 A.
And the corresponding 3x3 rotation matrix is:
[[ 0.72216358 -0.52038257 -0.45572112]
[ 0.69118937 0.51700833 0.50493528]
[-0.0271479 -0.67963547 0.73304748]]
"""
import numpy as np
import MDAnalysis.lib.qcprot as qcp
from numpy.testing import assert_almost_equal, assert_array_almost_equal
import MDAnalysis.analysis.rms as rms
import pytest
@pytest.fixture()
def atoms_a():
return np.array(
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=np.float64
)
@pytest.fixture()
def atoms_b():
return np.array(
[[13, 14, 15], [16, 17, 18], [19, 20, 21], [22, 23, 24]],
dtype=np.float64,
)
# Calculate rmsd after applying rotation
def rmsd(a, b):
"""Returns RMSD between two coordinate sets a and b."""
return np.sqrt(np.sum(np.power(a - b, 2)) / a.shape[1])
def test_CalcRMSDRotationalMatrix():
# Setup coordinates
frag_a = np.zeros((3, 7), dtype=np.float64)
frag_b = np.zeros((3, 7), dtype=np.float64)
N = 7
frag_a[0][0] = -2.803
frag_a[1][0] = -15.373
frag_a[2][0] = 24.556
frag_a[0][1] = 0.893
frag_a[1][1] = -16.062
frag_a[2][1] = 25.147
frag_a[0][2] = 1.368
frag_a[1][2] = -12.371
frag_a[2][2] = 25.885
frag_a[0][3] = -1.651
frag_a[1][3] = -12.153
frag_a[2][3] = 28.177
frag_a[0][4] = -0.440
frag_a[1][4] = -15.218
frag_a[2][4] = 30.068
frag_a[0][5] = 2.551
frag_a[1][5] = -13.273
frag_a[2][5] = 31.372
frag_a[0][6] = 0.105
frag_a[1][6] = -11.330
frag_a[2][6] = 33.567
frag_b[0][0] = -14.739
frag_b[1][0] = -18.673
frag_b[2][0] = 15.040
frag_b[0][1] = -12.473
frag_b[1][1] = -15.810
frag_b[2][1] = 16.074
frag_b[0][2] = -14.802
frag_b[1][2] = -13.307
frag_b[2][2] = 14.408
frag_b[0][3] = -17.782
frag_b[1][3] = -14.852
frag_b[2][3] = 16.171
frag_b[0][4] = -16.124
frag_b[1][4] = -14.617
frag_b[2][4] = 19.584
frag_b[0][5] = -15.029
frag_b[1][5] = -11.037
frag_b[2][5] = 18.902
frag_b[0][6] = -18.577
frag_b[1][6] = -10.001
frag_b[2][6] = 17.996
# Allocate rotation array
rot = np.zeros((9,), dtype=np.float64)
# Calculate center of geometry
comA = np.sum(frag_a, axis=1) / N
comB = np.sum(frag_b, axis=1) / N
# Center each fragment
frag_a = frag_a - comA.reshape(3, 1)
frag_b = frag_b - comB.reshape(3, 1)
# Calculate rmsd and rotation matrix
qcp_rmsd = qcp.CalcRMSDRotationalMatrix(frag_a.T, frag_b.T, N, rot, None)
# print 'qcp rmsd = ',rmsd
# print 'rotation matrix:'
# print rot.reshape((3,3))
# rotate frag_b to obtain optimal alignment
frag_br = np.dot(frag_b.T, rot.reshape((3, 3)))
aligned_rmsd = rmsd(frag_br.T, frag_a)
# print 'rmsd after applying rotation: ',rmsd
assert_almost_equal(
aligned_rmsd,
0.719106,
6,
"RMSD between fragments A and B does not match excpected value.",
)
expected_rot = np.array(
[
[0.72216358, -0.52038257, -0.45572112],
[0.69118937, 0.51700833, 0.50493528],
[-0.0271479, -0.67963547, 0.73304748],
]
)
assert_almost_equal(
rot.reshape((3, 3)),
expected_rot,
6,
"Rotation matrix for aliging B to A does not have expected values.",
)
def test_innerproduct(atoms_a, atoms_b):
a = 2450.0
b = np.array([430, 452, 474, 500, 526, 552, 570, 600, 630])
number_of_atoms = 4
e = np.zeros(9, dtype=np.float64)
g = qcp.InnerProduct(e, atoms_a, atoms_b, number_of_atoms, None)
assert_almost_equal(a, g)
assert_array_almost_equal(b, e)
def test_RMSDmatrix(atoms_a, atoms_b):
number_of_atoms = 4
rotation = np.zeros(9, dtype=np.float64)
rmsd = qcp.CalcRMSDRotationalMatrix(
atoms_a, atoms_b, number_of_atoms, rotation, None
) # no weights
rmsd_ref = 20.73219522556076
assert_almost_equal(rmsd_ref, rmsd)
rotation_ref = np.array(
[
0.9977195,
0.02926979,
0.06082009,
-0.0310942,
0.9990878,
0.02926979,
-0.05990789,
-0.0310942,
0.9977195,
]
)
assert_array_almost_equal(rotation, rotation_ref, 6)
def test_RMSDmatrix_simple(atoms_a, atoms_b):
number_of_atoms = 4
rotation = np.zeros(9, dtype=np.float64)
rmsd = qcp.CalcRMSDRotationalMatrix(
atoms_a, atoms_b, number_of_atoms, rotation, None
) # no weights
rmsd_ref = 20.73219522556076
assert_almost_equal(rmsd_ref, rmsd)
rotation_ref = np.array(
[
0.9977195,
0.02926979,
0.06082009,
-0.0310942,
0.9990878,
0.02926979,
-0.05990789,
-0.0310942,
0.9977195,
]
)
assert_array_almost_equal(rotation, rotation_ref, 6)
def test_rmsd(atoms_a, atoms_b):
rotation_m = np.array(
[
[0.9977195, 0.02926979, 0.06082009],
[-0.0310942, 0.9990878, 0.02926979],
[-0.05990789, -0.0310942, 0.9977195],
]
)
atoms_b_aligned = np.dot(atoms_b, rotation_m)
rmsd = rms.rmsd(atoms_b_aligned, atoms_a)
rmsd_ref = 20.73219522556076
assert_almost_equal(rmsd, rmsd_ref, 6)
def test_weights(atoms_a, atoms_b):
no_of_atoms = 4
weights = np.array([1, 2, 3, 4], dtype=np.float64)
rotation = np.zeros(9, dtype=np.float64)
rmsd = qcp.CalcRMSDRotationalMatrix(
atoms_a, atoms_b, no_of_atoms, rotation, weights
)
assert_almost_equal(rmsd, 32.798779202159416)
rotation_ref = np.array(
[
0.99861395,
0.022982,
0.04735006,
-0.02409085,
0.99944556,
0.022982,
-0.04679564,
-0.02409085,
0.99861395,
]
)
np.testing.assert_almost_equal(rotation_ref, rotation)
|