File: test_transformations.py

package info (click to toggle)
mdanalysis 2.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 116,696 kB
  • sloc: python: 92,135; ansic: 8,156; makefile: 215; sh: 138
file content (849 lines) | stat: -rw-r--r-- 25,526 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
from itertools import permutations

import numpy as np
import pytest
from numpy.testing import (
    assert_allclose,
    assert_equal,
    assert_almost_equal,
    assert_array_equal,
)

from MDAnalysis.lib import transformations as t

from unittest import TestCase


"""
Testing transformations is weird because there are 2 versions of many of
these functions.  This is because both python and Cython versions of
these functions exist.  To test therefore, each test has to be done twice,
once for each backend.  This is done through parametrizing and passing
in both versions of the function as an argument.

This should ensure that both versions work and are covered!

.. versionchanged:: 1.0.0
   test_transformations_old_module was removed as core/transformations.py is
   gone 
"""

# tolerance for tests
_ATOL = 1e-06


@pytest.mark.parametrize("f", [t._py_identity_matrix, t.identity_matrix])
def test_identity_matrix(f):
    I = f()
    assert_allclose(I, np.dot(I, I))
    assert_equal(np.sum(I), np.trace(I))
    assert_allclose(I, np.identity(4, dtype=np.float64))


@pytest.mark.parametrize(
    "f",
    [
        t._py_translation_matrix,
        t.translation_matrix,
    ],
)
def test_translation_matrix(f):
    v = np.array([0.2, 0.2, 0.2])
    assert_allclose(v, f(v)[:3, 3])


def test_translation_from_matrix():
    # doesn't seem to have a Cython backend
    v0 = np.array([0.2, 0.2, 0.2])
    v1 = t.translation_from_matrix(t.translation_matrix(v0))
    assert_allclose(v0, v1)


@pytest.mark.parametrize(
    "f",
    [
        t._py_reflection_matrix,
        t.reflection_matrix,
    ],
)
def test_reflection_matrix(f):
    v0 = np.array([0.2, 0.2, 0.2, 1.0])  # arbitrary values
    v1 = np.array([0.4, 0.4, 0.4])
    R = f(v0, v1)
    assert_allclose(2.0, np.trace(R))
    assert_allclose(v0, np.dot(R, v0))
    v2 = v0.copy()
    v2[:3] += v1
    v3 = v0.copy()
    v2[:3] -= v1
    assert_allclose(v2, np.dot(R, v3))


def test_reflection_from_matrix():
    v0 = np.array([0.2, 0.2, 0.2])  # arbitrary values
    v1 = np.array([0.4, 0.4, 0.4])
    M0 = t.reflection_matrix(v0, v1)
    point, normal = t.reflection_from_matrix(M0)
    M1 = t.reflection_matrix(point, normal)
    assert_equal(t.is_same_transform(M0, M1), True)


@pytest.mark.parametrize(
    "f",
    [
        t._py_rotation_matrix,
        t.rotation_matrix,
    ],
)
def test_rotation_matrix(f):
    R = f(np.pi / 2.0, [0, 0, 1], [1, 0, 0])
    assert_allclose(np.dot(R, [0, 0, 0, 1]), [1.0, -1.0, 0.0, 1.0])
    angle = 0.2 * 2 * np.pi  # arbitrary value
    direc = np.array([0.2, 0.2, 0.2])
    point = np.array([0.4, 0.4, 0.4])
    R0 = f(angle, direc, point)
    R1 = f(angle - 2 * np.pi, direc, point)
    assert_equal(t.is_same_transform(R0, R1), True)
    R0 = f(angle, direc, point)
    R1 = f(-angle, -direc, point)
    assert_equal(t.is_same_transform(R0, R1), True)
    I = np.identity(4, np.float64)
    assert_allclose(I, f(np.pi * 2, direc), atol=_ATOL)
    assert_allclose(2.0, np.trace(f(np.pi / 2, direc, point)))


def test_rotation_from_matrix():
    angle = 0.2 * 2 * np.pi  # arbitrary values
    direc = np.array([0.2, 0.2, 0.2])
    point = np.array([0.4, 0.4, 0.4])
    R0 = t.rotation_matrix(angle, direc, point)
    angle, direc, point = t.rotation_from_matrix(R0)
    R1 = t.rotation_matrix(angle, direc, point)
    assert_equal(t.is_same_transform(R0, R1), True)


@pytest.mark.parametrize(
    "f",
    [
        t._py_scale_matrix,
        t.scale_matrix,
    ],
)
def test_scale_matrix(f):
    v = np.array([14.1, 15.1, 16.1, 1])
    S = f(-1.234)
    assert_allclose(np.dot(S, v)[:3], -1.234 * v[:3])


def test_scale_from_matrix():
    factor = 7
    origin = np.array([0.2, 0.2, 0.2])  # arbitrary values
    direct = np.array([0.4, 0.4, 0.4])
    S0 = t.scale_matrix(factor, origin)
    factor, origin, direction = t.scale_from_matrix(S0)
    S1 = t.scale_matrix(factor, origin, direction)
    assert_equal(t.is_same_transform(S0, S1), True)
    S0 = t.scale_matrix(factor, origin, direct)
    factor, origin, direction = t.scale_from_matrix(S0)
    S1 = t.scale_matrix(factor, origin, direction)
    assert_equal(t.is_same_transform(S0, S1), True)


@pytest.mark.parametrize(
    "f",
    [
        t._py_projection_matrix,
        t.projection_matrix,
    ],
)
class TestProjectionMatrix(object):
    def test_projection_matrix_1(self, f):
        P = f((0, 0, 0), (1, 0, 0))
        assert_allclose(P[1:, 1:], np.identity(4)[1:, 1:], atol=_ATOL)

    def test_projection_matrix_2(self, f):
        point = np.array([0.2, 0.2, 0.2])  # arbitrary values
        normal = np.array([0.4, 0.4, 0.4])
        direct = np.array([0.6, 0.6, 0.6])
        persp = np.array([0.8, 0.8, 0.8])

        P0 = f(point, normal)
        # TODO: why isn't this used anymore?
        P1 = f(point, normal, direction=direct)
        P2 = f(point, normal, perspective=persp)
        P3 = f(point, normal, perspective=persp, pseudo=True)
        assert_equal(t.is_same_transform(P2, np.dot(P0, P3)), True)

    def test_projection_matrix_3(self, f):
        P = f((3, 0, 0), (1, 1, 0), (1, 0, 0))
        v0 = np.array([14.1, 15.1, 16.1, 1])  # arbitrary values
        v1 = np.dot(P, v0)
        assert_allclose(v1[1], v0[1], atol=_ATOL)
        assert_allclose(v1[0], 3.0 - v1[1], atol=_ATOL)


class TestProjectionFromMatrix(object):
    @staticmethod
    @pytest.fixture()
    def data():
        point = np.array([0.2, 0.2, 0.2])  # arbitrary values
        normal = np.array([0.4, 0.4, 0.4])
        direct = np.array([0.6, 0.6, 0.6])
        persp = np.array([0.8, 0.8, 0.8])
        return point, normal, direct, persp

    def test_projection_from_matrix_1(self, data):
        point, normal, direct, persp = data
        P0 = t.projection_matrix(point, normal)
        result = t.projection_from_matrix(P0)
        P1 = t.projection_matrix(*result)
        assert_equal(t.is_same_transform(P0, P1), True)

    def test_projection_from_matrix_2(self, data):
        point, normal, direct, persp = data
        P0 = t.projection_matrix(point, normal, direct)
        result = t.projection_from_matrix(P0)
        P1 = t.projection_matrix(*result)
        assert_equal(t.is_same_transform(P0, P1), True)

    def test_projection_from_matrix_3(self, data):
        point, normal, direct, persp = data
        P0 = t.projection_matrix(
            point, normal, perspective=persp, pseudo=False
        )
        result = t.projection_from_matrix(P0, pseudo=False)
        P1 = t.projection_matrix(*result)
        assert_equal(t.is_same_transform(P0, P1), True)

    def test_projection_from_matrix_4(self, data):
        point, normal, direct, persp = data
        P0 = t.projection_matrix(point, normal, perspective=persp, pseudo=True)
        result = t.projection_from_matrix(P0, pseudo=True)
        P1 = t.projection_matrix(*result)
        assert_equal(t.is_same_transform(P0, P1), True)


@pytest.mark.parametrize(
    "f",
    [
        t._py_clip_matrix,
        t.clip_matrix,
    ],
)
class TestClipMatrix(object):
    def test_clip_matrix_1(self, f):
        frustrum = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6])  # arbitrary values
        frustrum[1] += frustrum[0]
        frustrum[3] += frustrum[2]
        frustrum[5] += frustrum[4]
        M = f(perspective=False, *frustrum)
        assert_allclose(
            np.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0]),
            np.array([-1.0, -1.0, -1.0, 1.0]),
        )
        assert_allclose(
            np.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0]),
            np.array([1.0, 1.0, 1.0, 1.0]),
        )

    def test_clip_matrix_2(self, f):
        frustrum = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6])  # arbitrary values
        frustrum[1] += frustrum[0]
        frustrum[3] += frustrum[2]
        frustrum[5] += frustrum[4]
        M = f(perspective=True, *frustrum)
        v = np.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
        assert_allclose(v / v[3], np.array([-1.0, -1.0, -1.0, 1.0]))
        v = np.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0])
        assert_allclose(v / v[3], np.array([1.0, 1.0, -1.0, 1.0]))

    def test_clip_matrix_frustrum_left_right_bounds(self, f):
        """ValueError should be raised if left > right."""
        frustrum = np.array([0.4, 0.3, 0.3, 0.7, 0.5, 1.1])
        with pytest.raises(ValueError):
            f(*frustrum)

    def test_clip_matrix_frustrum_bottom_top_bounds(self, f):
        """ValueError should be raised if bottom > top."""
        frustrum = np.array([0.1, 0.3, 0.71, 0.7, 0.5, 1.1])
        with pytest.raises(ValueError):
            f(*frustrum)

    def test_clip_matrix_frustrum_near_far_bounds(self, f):
        """ValueError should be raised if near > far."""
        frustrum = np.array([0.1, 0.3, 0.3, 0.7, 1.5, 1.1])
        with pytest.raises(ValueError):
            f(*frustrum)


@pytest.mark.parametrize(
    "f",
    [
        t._py_shear_matrix,
        t.shear_matrix,
    ],
)
def test_shear_matrix(f):
    angle = 0.2 * 4 * np.pi  # arbitrary values
    direct = np.array([0.2, 0.2, 0.2])
    point = np.array([0.3, 0.4, 0.5])
    normal = np.cross(direct, np.array([0.8, 0.6, 0.4]))
    S = f(angle, direct, point, normal)
    assert_allclose(1.0, np.linalg.det(S), atol=_ATOL)


def test_shear_from_matrix():
    # This seems to fail sometimes if the random numbers
    # roll certain values....
    # angle = (random.random() - 0.5) * 4*np.pi
    # direct = np.random.random(3) - 0.5
    # point = np.random.random(3) - 0.5
    # normal = np.cross(direct, np.random.random(3))
    # In this random configuration the test will fail about 0.05% of all times.
    # Then we hit some edge-cases of the algorithm. The edge cases for these
    # values are slightly different for the linalg library used (MKL/LAPACK).
    # So here are some of my random numbers
    angle = 2.8969075413405783  # arbitrary values
    direct = np.array([-0.31117458, -0.41769518, -0.01188556])
    point = np.array([-0.0035982, -0.40997482, 0.42241425])
    normal = np.cross(direct, np.array([0.08122421, 0.4747914, 0.19851859]))

    S0 = t.shear_matrix(angle, direct, point, normal)
    angle, direct, point, normal = t.shear_from_matrix(S0)
    S1 = t.shear_matrix(angle, direct, point, normal)
    assert_equal(t.is_same_transform(S0, S1), True)


class TestDecomposeMatrix(object):
    def test_decompose_matrix_1(self):
        T0 = t.translation_matrix((1, 2, 3))
        scale, shear, angles, trans, persp = t.decompose_matrix(T0)
        T1 = t.translation_matrix(trans)
        assert_allclose(T0, T1)

    def test_decompose_matrix_2(self):
        S = t.scale_matrix(0.123)
        scale, shear, angles, trans, persp = t.decompose_matrix(S)
        assert_equal(scale[0], 0.123)

    def test_decompose_matrix_3(self):
        R0 = t.euler_matrix(1, 2, 3)
        scale, shear, angles, trans, persp = t.decompose_matrix(R0)
        R1 = t.euler_matrix(*angles)
        assert_allclose(R0, R1)


def test_compose_matrix():
    scale = np.array([0.2, 0.2, 0.2])  # arbitrary values
    shear = np.array([0.4, 0.4, 0.4])
    angles = np.array([0.6, 0.6, 0.6]) * 2 * np.pi
    trans = np.array([0.8, 0.8, 0.8])
    persp = np.array([0.9, 0.9, 0.9, 0.9])

    M0 = t.compose_matrix(scale, shear, angles, trans, persp)
    result = t.decompose_matrix(M0)
    M1 = t.compose_matrix(*result)
    assert_equal(t.is_same_transform(M0, M1), True)


@pytest.mark.parametrize(
    "f",
    [
        t._py_orthogonalization_matrix,
        t.orthogonalization_matrix,
    ],
)
class TestOrthogonalizationMatrix(object):
    def test_orthogonalization_matrix_1(self, f):
        O = f((10.0, 10.0, 10.0), (90.0, 90.0, 90.0))
        assert_allclose(O[:3, :3], np.identity(3, float) * 10, atol=_ATOL)

    def test_orthogonalization_matrix_2(self, f):
        O = f([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
        assert_allclose(np.sum(O), 43.063229, atol=_ATOL)


@pytest.mark.parametrize(
    "f",
    [
        t._py_superimposition_matrix,
        t.superimposition_matrix,
    ],
)
def test_superimposition_matrix(f):
    v0 = np.sin(np.linspace(0, 0.99, 30)).reshape(3, 10)  # arbitrary values
    M = f(v0, v0)
    assert_allclose(M, np.identity(4), atol=_ATOL)

    R = t.random_rotation_matrix(np.array([0.3, 0.4, 0.5]))
    v0 = ((1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1))
    v1 = np.dot(R, v0)
    M = f(v0, v1)
    assert_allclose(v1, np.dot(M, v0), atol=_ATOL)

    v0 = np.sin(np.linspace(-1, 1, 400)).reshape(4, 100)
    v0[3] = 1.0
    v1 = np.dot(R, v0)
    M = f(v0, v1)
    assert_allclose(v1, np.dot(M, v0), atol=_ATOL)

    S = t.scale_matrix(0.45)
    T = t.translation_matrix(np.array([0.2, 0.2, 0.2]) - 0.5)
    M = t.concatenate_matrices(T, R, S)
    v1 = np.dot(M, v0)
    v0[:3] += np.sin(np.linspace(0.0, 1e-9, 300)).reshape(3, -1)
    M = f(v0, v1, scaling=True)
    assert_allclose(v1, np.dot(M, v0), atol=_ATOL)

    M = f(v0, v1, scaling=True, usesvd=False)
    assert_allclose(v1, np.dot(M, v0), atol=_ATOL)

    v = np.empty((4, 100, 3), dtype=np.float64)
    v[:, :, 0] = v0
    M = f(v0, v1, scaling=True, usesvd=False)
    assert_allclose(v1, np.dot(M, v[:, :, 0]), atol=_ATOL)


@pytest.mark.parametrize(
    "f",
    [
        t._py_euler_matrix,
        t.euler_matrix,
    ],
)
class TestEulerMatrix(object):
    def test_euler_matrix_1(self, f):
        R = f(1, 2, 3, "syxz")
        assert_allclose(np.sum(R[0]), -1.34786452)

    def test_euler_matrix_2(self, f):
        R = f(1, 2, 3, (0, 1, 0, 1))
        assert_allclose(np.sum(R[0]), -0.383436184)


@pytest.mark.parametrize(
    "f",
    [
        t._py_euler_from_matrix,
        t.euler_from_matrix,
    ],
)
class TestEulerFromMatrix(object):
    def test_euler_from_matrix_1(self, f):
        R0 = t.euler_matrix(1, 2, 3, "syxz")
        al, be, ga = f(R0, "syxz")
        R1 = t.euler_matrix(al, be, ga, "syxz")
        assert_allclose(R0, R1)

    def test_euler_from_matrix_2(self, f):
        angles = 4.0 * np.pi * np.array([-0.3, -0.3, -0.3])  # arbitrary values
        for axes in t._AXES2TUPLE.keys():
            R0 = t.euler_matrix(axes=axes, *angles)
            R1 = t.euler_matrix(axes=axes, *f(R0, axes))
            assert_allclose(R0, R1, err_msg=("{0} failed".format(axes)))


def test_euler_from_quaternion():
    angles = t.euler_from_quaternion([0.99810947, 0.06146124, 0, 0])
    assert_allclose(angles, [0.123, 0, 0], atol=_ATOL)


@pytest.mark.parametrize(
    "f",
    [
        t._py_quaternion_from_euler,
        t.quaternion_from_euler,
    ],
)
def test_quaternion_from_euler(f):
    q = f(1, 2, 3, "ryxz")
    assert_allclose(q, [0.435953, 0.310622, -0.718287, 0.444435], atol=_ATOL)


@pytest.mark.parametrize(
    "f",
    [
        t._py_quaternion_about_axis,
        t.quaternion_about_axis,
    ],
)
def test_quaternion_about_axis(f):
    q = f(0.123, (1, 0, 0))
    assert_allclose(q, [0.99810947, 0.06146124, 0, 0], atol=_ATOL)


@pytest.mark.parametrize(
    "f",
    [
        t._py_quaternion_matrix,
        t.quaternion_matrix,
    ],
)
class TestQuaternionMatrix(object):
    def test_quaternion_matrix_1(self, f):
        M = f([0.99810947, 0.06146124, 0, 0])
        assert_allclose(M, t.rotation_matrix(0.123, (1, 0, 0)), atol=_ATOL)

    def test_quaternion_matrix_2(self, f):
        M = f([1, 0, 0, 0])
        assert_allclose(M, t.identity_matrix(), atol=_ATOL)

    def test_quaternion_matrix_3(self, f):
        M = f([0, 1, 0, 0])
        assert_allclose(M, np.diag([1, -1, -1, 1]), atol=_ATOL)


@pytest.mark.parametrize(
    "f",
    [
        t._py_quaternion_from_matrix,
        t.quaternion_from_matrix,
    ],
)
class TestQuaternionFromMatrix(object):
    def test_quaternion_from_matrix_1(self, f):
        q = f(t.identity_matrix(), True)
        assert_allclose(q, [1.0, 0.0, 0.0, 0.0], atol=_ATOL)

    def test_quaternion_from_matrix_2(self, f):
        q = f(np.diag([1.0, -1.0, -1.0, 1.0]))
        check = np.allclose(q, [0, 1, 0, 0], atol=_ATOL) or np.allclose(
            q, [0, -1, 0, 0], atol=_ATOL
        )
        assert_equal(check, True)

    def test_quaternion_from_matrix_3(self, f):
        R = t.rotation_matrix(0.123, (1, 2, 3))
        q = f(R, True)
        assert_allclose(
            q, [0.9981095, 0.0164262, 0.0328524, 0.0492786], atol=_ATOL
        )

    def test_quaternion_from_matrix_4(self, f):
        R = [
            [-0.545, 0.797, 0.260, 0],
            [0.733, 0.603, -0.313, 0],
            [-0.407, 0.021, -0.913, 0],
            [0, 0, 0, 1],
        ]
        q = f(R)
        assert_allclose(q, [0.19069, 0.43736, 0.87485, -0.083611], atol=_ATOL)

    def test_quaternion_from_matrix_5(self, f):
        R = [
            [0.395, 0.362, 0.843, 0],
            [-0.626, 0.796, -0.056, 0],
            [-0.677, -0.498, 0.529, 0],
            [0, 0, 0, 1],
        ]
        q = f(R)
        assert_allclose(
            q, [0.82336615, -0.13610694, 0.46344705, -0.29792603], atol=_ATOL
        )

    def test_quaternion_from_matrix_6(self, f):
        R = t.random_rotation_matrix()
        q = f(R)
        assert_equal(t.is_same_transform(R, t.quaternion_matrix(q)), True)


@pytest.mark.parametrize(
    "f",
    [
        t._py_quaternion_multiply,
        t.quaternion_multiply,
    ],
)
def test_quaternion_multiply(f):
    q = f([4, 1, -2, 3], [8, -5, 6, 7])
    assert_allclose(q, [28, -44, -14, 48])


@pytest.mark.parametrize(
    "f",
    [
        t._py_quaternion_conjugate,
        t.quaternion_conjugate,
    ],
)
def test_quaternion_conjugate(f):
    q0 = t.random_quaternion()
    q1 = f(q0)
    check = q1[0] == q0[0] and all(q1[1:] == -q0[1:])
    assert_equal(check, True)


@pytest.mark.parametrize(
    "f",
    [
        t._py_quaternion_inverse,
        t.quaternion_inverse,
    ],
)
def test_quaternion_inverse(f):
    q0 = t.random_quaternion()
    q1 = f(q0)
    assert_allclose(t.quaternion_multiply(q0, q1), [1, 0, 0, 0], atol=_ATOL)


def test_quaternion_real():
    assert_allclose(t.quaternion_real([3.0, 0.0, 1.0, 2.0]), 3.0)


def test_quaternion_imag():
    assert_allclose(t.quaternion_imag([3.0, 0.0, 1.0, 2.0]), [0.0, 1.0, 2.0])


@pytest.mark.parametrize(
    "f",
    [
        t._py_quaternion_slerp,
        t.quaternion_slerp,
    ],
)
def test_quaternion_slerp(f):
    q0 = t.random_quaternion()
    q1 = t.random_quaternion()
    q = f(q0, q1, 0.0)
    assert_allclose(q, q0, atol=_ATOL)

    q = f(q0, q1, 1.0, 1)
    assert_allclose(q, q1, atol=_ATOL)

    q = f(q0, q1, 0.5)
    angle = np.arccos(np.dot(q0, q))

    check = np.allclose(2.0, np.arccos(np.dot(q0, q1)) / angle) or np.allclose(
        2.0, np.arccos(-np.dot(q0, q1)) / angle
    )

    assert_equal(check, True)


@pytest.mark.parametrize(
    "f",
    [
        t._py_random_quaternion,
        t.random_quaternion,
    ],
)
class TestRandomQuaternion(object):
    def test_random_quaternion_1(self, f):
        q = f()
        assert_allclose(1.0, t.vector_norm(q))

    def test_random_quaternion_2(self, f):
        q = f(np.array([0.2, 0.2, 0.2]))
        assert_equal(len(q.shape), 1)
        assert_equal(q.shape[0] == 4, True)


@pytest.mark.parametrize(
    "f",
    [
        t._py_random_rotation_matrix,
        t.random_rotation_matrix,
    ],
)
def test_random_rotation_matrix(f):
    R = f()
    assert_allclose(np.dot(R.T, R), np.identity(4), atol=_ATOL)


@pytest.mark.parametrize(
    "f",
    [
        t._py_inverse_matrix,
        t.inverse_matrix,
    ],
)
class TestInverseMatrix(object):
    @pytest.mark.parametrize("size", list(range(1, 7)))
    def test_inverse(self, size, f):
        # Create a known random state to generate numbers from
        # these numbers will then be uncorrelated but deterministic
        rs = np.random.RandomState(1234)
        M0 = rs.randn(size, size)
        M1 = f(M0)
        assert_allclose(M1, np.linalg.inv(M0), err_msg=str(size), atol=_ATOL)

    def test_inverse_matrix(self, f):
        M0 = t.random_rotation_matrix()
        M1 = f(M0.T)
        assert_allclose(M1, np.linalg.inv(M0.T))


@pytest.mark.parametrize(
    "f",
    [
        t._py_is_same_transform,
        t.is_same_transform,
    ],
)
class TestIsSameTransform(object):
    def test_is_same_transform_1(self, f):
        assert_equal(f(np.identity(4), np.identity(4)), True)

    def test_is_same_transform_2(self, f):
        assert_equal(f(t.random_rotation_matrix(), np.identity(4)), False)


@pytest.mark.parametrize(
    "f",
    [
        t._py_random_vector,
        t.random_vector,
    ],
)
class TestRandomVector(object):
    def test_random_vector_1(self, f):
        v = f(1000)
        check = np.all(v >= 0.0) and np.all(v < 1.0)
        assert_equal(check, True)

    def test_random_vector_2(self, f):
        v0 = f(10)
        v1 = f(10)
        assert_equal(np.any(v0 == v1), False)


@pytest.mark.parametrize(
    "f",
    [
        t._py_unit_vector,
        t.unit_vector,
    ],
)
class TestUnitVector(object):
    def test_unit_vector_1(self, f):
        v0 = np.array([0.2, 0.2, 0.2])
        v1 = f(v0)
        assert_allclose(v1, v0 / np.linalg.norm(v0), atol=_ATOL)

    def test_unit_vector_2(self, f):
        v0 = np.sin(np.linspace(0, 10, 5 * 4 * 3)).reshape(5, 4, 3)
        v1 = f(v0, axis=-1)
        v2 = v0 / np.expand_dims(np.sqrt(np.sum(v0 * v0, axis=2)), 2)
        assert_allclose(v1, v2, atol=_ATOL)

    def test_unit_vector_3(self, f):
        v0 = np.sin(np.linspace(0, 10, 5 * 4 * 3)).reshape(5, 4, 3)
        v1 = f(v0, axis=1)
        v2 = v0 / np.expand_dims(np.sqrt(np.sum(v0 * v0, axis=1)), 1)
        assert_allclose(v1, v2, atol=_ATOL)

    def test_unit_vector_4(self, f):
        v0 = np.sin(np.linspace(0, 10, 5 * 4 * 3)).reshape(5, 4, 3)
        v1 = np.empty((5, 4, 3), dtype=np.float64)
        v2 = v0 / np.expand_dims(np.sqrt(np.sum(v0 * v0, axis=1)), 1)
        f(v0, axis=1, out=v1)
        assert_allclose(v1, v2, atol=_ATOL)

    def test_unit_vector_5(self, f):
        assert_equal(list(f([])), [])

    def test_unit_vector_6(self, f):
        assert_equal(list(f([1.0])), [1.0])


@pytest.mark.parametrize(
    "f",
    [
        t._py_vector_norm,
        t.vector_norm,
    ],
)
class TestVectorNorm(object):
    def test_vector_norm_1(self, f):
        v = np.array([0.2, 0.2, 0.2])
        n = f(v)
        assert_allclose(n, np.linalg.norm(v), atol=_ATOL)

    def test_vector_norm_2(self, f):
        v = np.sin(np.linspace(0, 10, 6 * 5 * 3)).reshape(6, 5, 3)
        n = f(v, axis=-1)
        assert_allclose(n, np.sqrt(np.sum(v * v, axis=2)), atol=_ATOL)

    def test_vector_norm_3(self, f):
        v = np.sin(np.linspace(0, 10, 6 * 5 * 3)).reshape(6, 5, 3)
        n = f(v, axis=1)
        assert_allclose(n, np.sqrt(np.sum(v * v, axis=1)), atol=_ATOL)

    def test_vector_norm_4(self, f):
        v = np.sin(np.linspace(0, 10, 5 * 4 * 3)).reshape(5, 4, 3)
        n = np.empty((5, 3), dtype=np.float64)
        f(v, axis=1, out=n)
        assert_allclose(n, np.sqrt(np.sum(v * v, axis=1)), atol=_ATOL)

    def test_vector_norm_5(self, f):
        assert_equal(f([]), 0.0)

    def test_vector_norm_6(self, f):
        assert_equal(f([1.0]), 1.0)


class TestArcBall(object):
    def test_arcball_1(self):
        ball = t.Arcball()
        ball = t.Arcball(initial=np.identity(4))
        ball.place([320, 320], 320)
        ball.down([500, 250])
        ball.drag([475, 275])
        R = ball.matrix()
        assert_allclose(np.sum(R), 3.90583455, atol=_ATOL)

    def test_arcball_2(self):
        ball = t.Arcball(initial=[1, 0, 0, 0])
        ball.place([320, 320], 320)
        ball.setaxes([1, 1, 0], [-1, 1, 0])
        ball.setconstrain(True)
        ball.down([400, 200])
        ball.drag([200, 400])
        R = ball.matrix()
        assert_allclose(np.sum(R), 0.2055924)


def test_rotaxis_equal_vectors():
    a = np.arange(3)
    x = t.rotaxis(a, a)
    assert_array_equal(x, [1, 0, 0])


def test_rotaxis_different_vectors():
    # use random coordinate system
    e = np.eye(3)
    r = np.array(
        [
            [0.69884766, 0.59804425, -0.39237102],
            [0.18784672, 0.37585347, 0.90744023],
            [0.69016342, -0.7078681, 0.15032367],
        ]
    )
    re = np.dot(r, e)

    for i, j, l in permutations(range(3)):
        x = t.rotaxis(re[i], re[j])
        # use abs since direction doesn't matter
        assert_almost_equal(np.abs(np.dot(x, re[l])), 1)