1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
import numpy as np
from numpy.testing import assert_allclose
import MDAnalysis
from MDAnalysis.visualization import streamlines, streamlines_3D
from MDAnalysis.coordinates.XTC import XTCWriter
from MDAnalysisTests.datafiles import Martini_membrane_gro
import pytest
from pytest import approx
import matplotlib.pyplot as plt
import os
@pytest.fixture(scope="session")
def univ():
u = MDAnalysis.Universe(Martini_membrane_gro)
return u
@pytest.fixture(scope="session")
def membrane_xtc(tmpdir_factory, univ):
x_delta, y_delta, z_delta = 0.5, 0.3, 0.2
tmp_xtc = tmpdir_factory.mktemp("streamlines").join("dummy.xtc")
with XTCWriter(str(tmp_xtc), n_atoms=univ.atoms.n_atoms) as xtc_writer:
for i in range(5):
univ.atoms.translate([x_delta, y_delta, z_delta])
xtc_writer.write(univ.atoms)
x_delta += 0.1
y_delta += 0.08
z_delta += 0.02
return str(tmp_xtc)
def test_produce_list_indices_point_in_polygon_this_frame():
# Define two squares:
# square1 covers the area [0,1]x[0,1]
# square2 covers the area [2,3]x[2,3]
square1 = [(0, 0), (1, 0), (1, 1), (0, 1)]
square2 = [(2, 2), (3, 2), (3, 3), (2, 3)]
# Create a list of vertex coordinates (for two squares)
vertex_list = [square1, square2]
# Define points:
# Point [0.5, 0.5] lies inside square1.
# Point [1.5, 1.5] lies outside both squares.
# Point [2.5, 2.5] lies inside square2.
# Point [3.5, 3.5] lies outside both squares.
points = np.array([[0.5, 0.5], [1.5, 1.5], [2.5, 2.5], [3.5, 3.5]])
# Call the function under test.
result = streamlines._produce_list_indices_point_in_polygon_this_frame(
vertex_list, points
)
# np.where returns a tuple; thus for each square we expect:
# For square1: point index 0 is inside → (array([0]),)
# For square2: point index 2 is inside → (array([2]),)
expected = [(np.array([0]),), (np.array([2]),)]
# Check that each result matches the expected indices.
for res_tuple, exp_tuple in zip(result, expected):
np.testing.assert_array_equal(res_tuple[0], exp_tuple[0])
def test_produce_list_centroids_empty():
# Simulate an empty index set for one square:
list_indices = [(np.array([]),)]
# Dummy particle coordinate array (won't be used since indices is empty)
pts = np.array([[0, 0], [1, 1]])
result = streamlines._produce_list_centroids_this_frame(list_indices, pts)
assert result == [None]
def test_produce_list_centroids_single_square():
# Create an array of particle coordinates
pts = np.array([[0, 0], [1, 1], [2, 2], [3, 3]])
# Choose indices that pick points [1] and [3]
indices_tuple = (np.array([1, 3]),)
list_indices = [indices_tuple]
result = streamlines._produce_list_centroids_this_frame(list_indices, pts)
expected = np.array([2.0, 2.0])
np.testing.assert_allclose(result[0], expected)
def test_produce_list_centroids_multiple_squares():
pts = np.array([[0, 0], [2, 2], [4, 4], [6, 6]])
# First square will use pts[0] and pts[2] -> average is [2,2]
indices1 = (np.array([0, 2]),)
# Second square will use pts[1] and pts[3] -> average is [4,4]
indices2 = (np.array([1, 3]),)
list_indices = [indices1, indices2]
result = streamlines._produce_list_centroids_this_frame(list_indices, pts)
expected1 = np.array([2, 2])
expected2 = np.array([4, 4])
np.testing.assert_array_equal(result[0], expected1)
np.testing.assert_array_equal(result[1], expected2)
def test_adjacent_squares():
# Test two adjacent squares that share a boundary.
# Square1 covers [0,1]x[0,1] and square2 covers [1,2]x[0,1].
# A point at [0.5, 0.5] should be in square1 and one at [1.5,0.5] should be in square2.
square1 = [(0, 0), (1, 0), (1, 1), (0, 1)]
square2 = [(1, 0), (2, 0), (2, 1), (1, 1)]
vertex_list = [square1, square2]
points = np.array(
[
[0.5, 0.5],
[1.5, 0.5],
]
)
result = streamlines._produce_list_indices_point_in_polygon_this_frame(
vertex_list, points
)
expected = [(np.array([0]),), (np.array([1]),)]
for res_tuple, exp_tuple in zip(result, expected):
np.testing.assert_array_equal(res_tuple[0], exp_tuple[0])
def test_point_on_boundary():
# Test that a point exactly on the square's boundary is not considered inside.
# For a square covering [0,1]x[0,1], a point at [1,0.5] lies exactly on the right edge.
# By default, matplotlib.path.Path.contains_points includes boundary points.
square = [(0, 0), (1, 0), (1, 1), (0, 1)]
vertex_list = [square]
points = np.array([[1, 0.5]]) # exactly on the boundary
result = streamlines._produce_list_indices_point_in_polygon_this_frame(
vertex_list, points
)
expected = [(np.array([0], dtype=int),)]
np.testing.assert_array_equal(result, expected)
def test_points_on_boundary_of_two_adjacent_squares():
square1 = [(0, 0), (1, 0), (1, 1), (0, 1)]
square2 = [(1, 0), (2, 0), (2, 1), (1, 1)]
vertex_list = [square1, square2]
points = np.array([[1, 0.5], [1, 0.7]]) # exactly on the boundary
result = streamlines._produce_list_indices_point_in_polygon_this_frame(
vertex_list, points
)
expected = [(np.array([0, 1], dtype=int),), (np.array([0, 1], dtype=int),)]
np.testing.assert_array_equal(result, expected)
def test_per_core_work_2D(membrane_xtc, univ):
xmin = univ.atoms.positions[..., 0].min()
xmax = univ.atoms.positions[..., 0].max()
ymin = univ.atoms.positions[..., 1].min()
ymax = univ.atoms.positions[..., 1].max()
tuple_of_limits = (xmin, xmax, ymin, ymax)
grid = streamlines.produce_grid(
tuple_of_limits=tuple_of_limits, grid_spacing=20
)
(
list_square_vertex_arrays_per_core,
list_parent_index_values,
_,
_,
) = streamlines.split_grid(grid=grid, num_cores=1)
values = streamlines.per_core_work(
topology_file_path=Martini_membrane_gro,
trajectory_file_path=membrane_xtc,
list_square_vertex_arrays_this_core=list_square_vertex_arrays_per_core[
0
],
MDA_selection="name PO4",
start_frame=1,
end_frame=2,
reconstruction_index_list=list_parent_index_values[0],
maximum_delta_magnitude=2.0,
)
for entry in values:
res = entry[1]
np.testing.assert_allclose(res[:2], np.array([0.8, 0.5]), atol=1e-1)
def test_streamplot_2D(membrane_xtc, univ):
# regression test the data structures
# generated by the 2D streamplot code
u1, v1, avg, std = streamlines.generate_streamlines(
topology_file_path=Martini_membrane_gro,
trajectory_file_path=membrane_xtc,
grid_spacing=20,
MDA_selection="name PO4",
start_frame=1,
end_frame=2,
xmin=univ.atoms.positions[..., 0].min(),
xmax=univ.atoms.positions[..., 0].max(),
ymin=univ.atoms.positions[..., 1].min(),
ymax=univ.atoms.positions[..., 1].max(),
maximum_delta_magnitude=2.0,
num_cores=1,
)
assert_allclose(
u1,
np.array(
[
[0.79999924, 0.79999924, 0.80000687, 0.79999542, 0.79998779],
[0.80000019, 0.79999542, 0.79999924, 0.79999542, 0.80001068],
[0.8000021, 0.79999924, 0.80001068, 0.80000305, 0.79999542],
[0.80000019, 0.79999542, 0.80001068, 0.80000305, 0.80000305],
[0.79999828, 0.80000305, 0.80000305, 0.80000305, 0.79999542],
]
),
)
assert_allclose(
v1,
np.array(
[
[0.53999901, 0.53999996, 0.53999996, 0.53999996, 0.54000092],
[0.5399971, 0.54000092, 0.54000092, 0.54000092, 0.5399971],
[0.54000473, 0.54000473, 0.54000092, 0.5399971, 0.54000473],
[0.54000092, 0.53999329, 0.53999329, 0.53999329, 0.54000092],
[0.54000092, 0.53999329, 0.53999329, 0.54000092, 0.53999329],
]
),
)
assert avg == pytest.approx(0.965194167)
assert std == pytest.approx(4.444808820e-06)
def test_streamplot_2D_zero_return(membrane_xtc, univ, tmpdir):
# simple roundtrip test to ensure that
# zeroed arrays are returned by the 2D streamplot
# code when called with an empty selection
u1, v1, avg, std = streamlines.generate_streamlines(
topology_file_path=Martini_membrane_gro,
trajectory_file_path=membrane_xtc,
grid_spacing=20,
MDA_selection="name POX",
start_frame=1,
end_frame=2,
xmin=univ.atoms.positions[..., 0].min(),
xmax=univ.atoms.positions[..., 0].max(),
ymin=univ.atoms.positions[..., 1].min(),
ymax=univ.atoms.positions[..., 1].max(),
maximum_delta_magnitude=2.0,
num_cores=1,
)
assert_allclose(u1, np.zeros((5, 5)))
assert_allclose(v1, np.zeros((5, 5)))
assert avg == approx(0.0)
assert std == approx(0.0)
def test_streamplot_2D_dual_core(membrane_xtc, univ, tmpdir):
# simple test to ensure that it runs with multiple cores
u1, v1, avg, std = streamlines.generate_streamlines(
topology_file_path=Martini_membrane_gro,
trajectory_file_path=membrane_xtc,
grid_spacing=20,
MDA_selection="name POX",
start_frame=1,
end_frame=2,
xmin=univ.atoms.positions[..., 0].min(),
xmax=univ.atoms.positions[..., 0].max(),
ymin=univ.atoms.positions[..., 1].min(),
ymax=univ.atoms.positions[..., 1].max(),
maximum_delta_magnitude=2.0,
num_cores=2,
)
assert_allclose(u1, np.zeros((5, 5)))
assert_allclose(v1, np.zeros((5, 5)))
assert avg == approx(0.0)
assert std == approx(0.0)
def test_streamplot_3D(membrane_xtc, univ, tmpdir):
# because mayavi is too heavy of a dependency
# for a roundtrip plotting test, simply
# aim to check for sensible values
# returned by generate_streamlines_3d
dx, dy, dz = streamlines_3D.generate_streamlines_3d(
topology_file_path=Martini_membrane_gro,
trajectory_file_path=membrane_xtc,
grid_spacing=20,
MDA_selection="name PO4",
start_frame=1,
end_frame=2,
xmin=univ.atoms.positions[..., 0].min(),
xmax=univ.atoms.positions[..., 0].max(),
ymin=univ.atoms.positions[..., 1].min(),
ymax=univ.atoms.positions[..., 1].max(),
zmin=univ.atoms.positions[..., 2].min(),
zmax=univ.atoms.positions[..., 2].max(),
maximum_delta_magnitude=2.0,
num_cores=1,
)
assert dx.shape == (5, 5, 2)
assert dy.shape == (5, 5, 2)
assert dz.shape == (5, 5, 2)
assert dx[4, 4, 0] == approx(0.700004, abs=1e-5)
assert dy[0, 0, 0] == approx(0.460000, abs=1e-5)
assert dz[2, 2, 0] == approx(0.240005, abs=1e-5)
|