File: rtree_simple.cpp

package info (click to toggle)
mdds 3.2.0-4
  • links: PTS
  • area: main
  • in suites: experimental
  • size: 6,372 kB
  • sloc: cpp: 21,777; sh: 1,369; makefile: 692; python: 602
file content (92 lines) | stat: -rw-r--r-- 3,162 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

// SPDX-FileCopyrightText: 2020 - 2025 Kohei Yoshida
//
// SPDX-License-Identifier: MIT

//!code-start: type
#include <mdds/rtree.hpp>

#include <string>
#include <iostream>

// key values are of type double, and we are storing std::string as a
// value for each spatial object.  By default, tree becomes 2-dimensional
// object store unless otherwise specified.
using rt_type = mdds::rtree<double, std::string>;
//!code-end: type

int main() try
{
    //!code-start: instantiate
    rt_type tree;
    //!code-end: instantiate

    //!code-start: insert-1
    tree.insert({{0.0, 0.0}, {15.0, 20.0}}, "first rectangle data");
    //!code-end: insert-1

    //!code-start: insert-2
    rt_type::extent_type bounds({-2.0, -1.0}, {1.0, 2.0});
    std::cout << "inserting value for " << bounds.to_string() << std::endl;
    tree.insert(bounds, "second rectangle data");
    //!code-end: insert-2

    //!code-start: insert-3
    bounds.start.d[0] = -1.0; // Change the first dimension value of the start rectangle point.
    bounds.end.d[1] += 1.0; // Increment the second dimension value of the end rectangle point.
    std::cout << "inserting value for " << bounds.to_string() << std::endl;
    tree.insert(bounds, "third rectangle data");
    //!code-end: insert-3

    //!code-start: insert-pt-1
    tree.insert({5.0, 6.0}, "first point data");
    //!code-end: insert-pt-1

    {
        //!code-start: search-overlap
        // Search for all objects that overlap with a (4, 4) - (7, 7) rectangle.
        auto results = tree.search({{4.0, 4.0}, {7.0, 7.0}}, rt_type::search_type::overlap);

        for (const std::string& v : results)
            std::cout << "value: " << v << std::endl;
        //!code-end: search-overlap
    }

    {
        //!code-start: search-match-1
        // Search for all objects whose bounding rectangles are exactly (4, 4) - (7, 7).
        auto results = tree.search({{4.0, 4.0}, {7.0, 7.0}}, rt_type::search_type::match);
        std::cout << "number of results: " << std::distance(results.begin(), results.end()) << std::endl;
        //!code-end: search-match-1
    }

    {
        //!code-start: search-match-2
        // Search for all objects whose bounding rectangles are exactly (0, 0) - (15, 20).
        auto results = tree.search({{0.0, 0.0}, {15.0, 20.0}}, rt_type::search_type::match);
        std::cout << "number of results: " << std::distance(results.begin(), results.end()) << std::endl;
        //!code-end: search-match-2

        //!code-start: iterator-deref
        std::cout << "value: " << *results.begin() << std::endl;
        //!code-end: iterator-deref

        std::cout << "--" << std::endl;

        //!code-start: iterator-attrs
        auto it = results.begin();
        std::cout << "value: " << *it << std::endl;
        std::cout << "extent: " << it.extent().to_string() << std::endl;
        std::cout << "depth: " << it.depth() << std::endl;
        //!code-end: iterator-attrs
    }

    return EXIT_SUCCESS;
}
catch (...)
{
    return EXIT_FAILURE;
}

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */