File: test_gradient.py

package info (click to toggle)
mdp 3.3-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 2,100 kB
  • sloc: python: 22,278; makefile: 31; sh: 6
file content (225 lines) | stat: -rw-r--r-- 9,620 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from __future__ import with_statement
import mdp
import bimdp

from mdp import numx, numx_rand

class TestGradientExtension(object):

    def test_sfa_gradient(self):
        """Test gradient for combination of SFA nodes."""
        sfa_node1 = bimdp.nodes.SFABiNode(output_dim=8)
        sfa_node2 = bimdp.nodes.SFABiNode(output_dim=7)
        sfa_node3 = bimdp.nodes.SFABiNode(output_dim=5)
        flow = sfa_node1 + sfa_node2 + sfa_node3
        x = numx_rand.random((300, 10))
        flow.train(x)
        x = numx_rand.random((2, 10))
        mdp.activate_extension("gradient")
        try:
            flow.execute(x, {"method": "gradient"})
        finally:
            mdp.deactivate_extension("gradient")

    def test_gradient_product(self):
        """Test that the product of gradients is calculated correctly."""
        sfa_node1 = bimdp.nodes.SFABiNode(output_dim=5)
        sfa_node2 = bimdp.nodes.SFABiNode(output_dim=3)
        flow = sfa_node1 + sfa_node2
        x = numx_rand.random((300, 10))
        flow.train(x)
        mdp.activate_extension("gradient")
        try:
            x1 = numx_rand.random((2, 10))
            x2, msg = sfa_node1.execute(x1, {"method": "gradient"})
            grad1 = msg["grad"]
            _, msg = sfa_node2.execute(x2, {"method": "gradient"})
            grad2 = msg["grad"]
            grad12 = flow.execute(x1, {"method": "gradient"})[1]["grad"]
            # use a different way to calculate the product of the gradients,
            # this method is too memory intensive for large data
            ref_grad = numx.sum(grad2[:,:,numx.newaxis,:] *
                             numx.transpose(grad1[:,numx.newaxis,:,:], (0,1,3,2)),
                             axis=3)
            assert numx.amax(abs(ref_grad - grad12)) < 1E-9
        finally:
            mdp.deactivate_extension("gradient")

    def test_quadexpan_gradient1(self):
        """Test validity of gradient for QuadraticExpansionBiNode."""
        node = mdp.nodes.QuadraticExpansionNode()
        x = numx.array([[1, 3, 4]])
        node.execute(x)
        mdp.activate_extension("gradient")
        try:
            result = node._gradient(x)
            grad = result[1]["grad"]
            reference = numx.array(
                [[[ 1, 0, 0],   # x1
                  [ 0, 1, 0],   # x2
                  [ 0, 0, 1],   # x3
                  [ 2, 0, 0],   # x1x1
                  [ 3, 1, 0],   # x1x2
                  [ 4, 0, 1],   # x1x3
                  [ 0, 6, 0],   # x2x2
                  [ 0, 4, 3],   # x2x3
                  [ 0, 0, 8]]]) # x3x3
            assert numx.all(grad == reference)
        finally:
            mdp.deactivate_extension("gradient")

    def test_quadexpan_gradient2(self):
        """Test gradient with multiple data points."""
        node = mdp.nodes.QuadraticExpansionNode()
        x = numx_rand.random((3,5))
        node.execute(x)
        mdp.activate_extension("gradient")
        try:
            result = node._gradient(x)
            gradient = result[1]["grad"]
            assert gradient.shape == (3,20,5)
        finally:
            mdp.deactivate_extension("gradient")

    def test_sfa2_gradient(self):
        sfa2_node1 = bimdp.nodes.SFA2BiNode(output_dim=5)
        sfa2_node2 = bimdp.nodes.SFA2BiNode(output_dim=3)
        flow = sfa2_node1 + sfa2_node2
        x = numx_rand.random((300, 6))
        flow.train(x)
        x = numx_rand.random((2, 6))
        mdp.activate_extension("gradient")
        try:
            flow.execute(x, {"method": "gradient"})
        finally:
            mdp.deactivate_extension("gradient")

    def test_sfa2_gradient2(self):
        def _alt_sfa2_grad(self, x):
            """Reference grad method based on quadratic forms."""
            # note that the H and f arrays are cached in the node and remain even
            # after the extension has been deactivated
            if not hasattr(self, "__gradient_Hs"):
                quad_forms = [self.get_quadratic_form(i)
                              for i in range(self.output_dim)]
                self.__gradient_Hs = numx.vstack((quad_form.H[numx.newaxis]
                                                for quad_form in quad_forms))
                self.__gradient_fs = numx.vstack((quad_form.f[numx.newaxis]
                                                for quad_form in quad_forms))
            grad = (numx.dot(x, self.__gradient_Hs) +
                        numx.repeat(self.__gradient_fs[numx.newaxis,:,:],
                                  len(x), axis=0))
            return grad
        sfa2_node = bimdp.nodes.SFA2BiNode(output_dim=3)
        x = numx_rand.random((300, 6))
        sfa2_node.train(x)
        sfa2_node.stop_training()
        x = numx_rand.random((2, 6))
        mdp.activate_extension("gradient")
        try:
            result1 = sfa2_node.execute(x, {"method": "gradient"})
            grad1 = result1[1]["grad"]
            grad2 = _alt_sfa2_grad(sfa2_node, x)
            assert numx.amax(abs(grad1 - grad2)) < 1E-9
        finally:
            mdp.deactivate_extension("gradient")

    def test_layer_gradient(self):
        """Test gradient for a simple layer."""
        node1 = mdp.nodes.SFA2Node(input_dim=4, output_dim=3)
        node2 = mdp.nodes.SFANode(input_dim=6, output_dim=2)
        layer = mdp.hinet.Layer([node1, node2])
        x = numx_rand.random((100,10))
        layer.train(x)
        layer.stop_training()
        mdp.activate_extension("gradient")
        try:
            x = numx_rand.random((7,10))
            result = layer._gradient(x)
            grad = result[1]["grad"]
            # get reference result
            grad1 = node1._gradient(x[:, :node1.input_dim])[1]["grad"]
            grad2 = node2._gradient(x[:, node1.input_dim:])[1]["grad"]
            ref_grad = numx.zeros(((7,5,10)))
            ref_grad[:, :node1.output_dim, :node1.input_dim] = grad1
            ref_grad[:, node1.output_dim:, node1.input_dim:] = grad2
            assert numx.all(grad == ref_grad)
        finally:
            mdp.deactivate_extension("gradient")

    def test_clonebilayer_gradient(self):
        """Test gradient for a simple layer."""
        layer = bimdp.hinet.CloneBiLayer(
                            bimdp.nodes.SFA2BiNode(input_dim=5, output_dim=2),
                            n_nodes=3)
        x = numx_rand.random((100,15))
        layer.train(x)
        layer.stop_training()
        mdp.activate_extension("gradient")
        try:
            x = numx_rand.random((7,15))
            result = layer._gradient(x)
            grad = result[1]["grad"]
            assert grad.shape == (7,6,15)
        finally:
            mdp.deactivate_extension("gradient")

    def test_switchboard_gradient1(self):
        """Test that gradient is correct for a tiny switchboard."""
        sboard = mdp.hinet.Switchboard(input_dim=4, connections=[2,0])
        x = numx_rand.random((2,4))
        mdp.activate_extension("gradient")
        try:
            result = sboard._gradient(x)
            grad = result[1]["grad"]
            ref_grad = numx.array([[[0,0,1,0], [1,0,0,0]],
                                 [[0,0,1,0], [1,0,0,0]]], dtype=grad.dtype)
            assert numx.all(grad == ref_grad)
        finally:
            mdp.deactivate_extension("gradient")

    def test_switchboard_gradient2(self):
        """Test gradient for a larger switchboard."""
        dim = 100
        connections = [int(i) for i in numx.random.random((dim,)) * (dim-1)]
        sboard = mdp.hinet.Switchboard(input_dim=dim, connections=connections)
        x = numx.random.random((10, dim))
        # assume a 5-dimensional gradient at this stage
        grad = numx.random.random((10, dim, 5))
        # original reference implementation
        def _switchboard_grad(self, x):
            grad = numx.zeros((self.output_dim, self.input_dim))
            grad[range(self.output_dim), self.connections] = 1
            return numx.tile(grad, (len(x), 1, 1))
        with mdp.extension("gradient"):
            result = sboard._gradient(x, grad)
            ext_grad = result[1]["grad"]
            tmp_grad = _switchboard_grad(sboard, x)
            ref_grad = numx.asarray([numx.dot(tmp_grad[i], grad[i])
                                     for i in range(len(tmp_grad))])
        assert numx.all(ext_grad == ref_grad)

    def test_network_gradient(self):
        """Test gradient for a small SFA network."""
        sfa_node = bimdp.nodes.SFABiNode(input_dim=4*4, output_dim=5)
        switchboard = bimdp.hinet.Rectangular2dBiSwitchboard(
                                                  in_channels_xy=8,
                                                  field_channels_xy=4,
                                                  field_spacing_xy=2)
        flownode = bimdp.hinet.BiFlowNode(bimdp.BiFlow([sfa_node]))
        sfa_layer = bimdp.hinet.CloneBiLayer(flownode,
                                             switchboard.output_channels)
        flow = bimdp.BiFlow([switchboard, sfa_layer])
        train_gen = [numx_rand.random((10, switchboard.input_dim))
                     for _ in range(3)]
        flow.train([None, train_gen])
        # now can test the gradient
        mdp.activate_extension("gradient")
        try:
            x = numx_rand.random((3, switchboard.input_dim))
            result = flow(x, {"method": "gradient"})
            grad = result[1]["grad"]
            assert grad.shape == (3, sfa_layer.output_dim,
                                  switchboard.input_dim)
        finally:
            mdp.deactivate_extension("gradient")