1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
from __future__ import with_statement
import mdp
import bimdp
from mdp import numx, numx_rand
class TestGradientExtension(object):
def test_sfa_gradient(self):
"""Test gradient for combination of SFA nodes."""
sfa_node1 = bimdp.nodes.SFABiNode(output_dim=8)
sfa_node2 = bimdp.nodes.SFABiNode(output_dim=7)
sfa_node3 = bimdp.nodes.SFABiNode(output_dim=5)
flow = sfa_node1 + sfa_node2 + sfa_node3
x = numx_rand.random((300, 10))
flow.train(x)
x = numx_rand.random((2, 10))
mdp.activate_extension("gradient")
try:
flow.execute(x, {"method": "gradient"})
finally:
mdp.deactivate_extension("gradient")
def test_gradient_product(self):
"""Test that the product of gradients is calculated correctly."""
sfa_node1 = bimdp.nodes.SFABiNode(output_dim=5)
sfa_node2 = bimdp.nodes.SFABiNode(output_dim=3)
flow = sfa_node1 + sfa_node2
x = numx_rand.random((300, 10))
flow.train(x)
mdp.activate_extension("gradient")
try:
x1 = numx_rand.random((2, 10))
x2, msg = sfa_node1.execute(x1, {"method": "gradient"})
grad1 = msg["grad"]
_, msg = sfa_node2.execute(x2, {"method": "gradient"})
grad2 = msg["grad"]
grad12 = flow.execute(x1, {"method": "gradient"})[1]["grad"]
# use a different way to calculate the product of the gradients,
# this method is too memory intensive for large data
ref_grad = numx.sum(grad2[:,:,numx.newaxis,:] *
numx.transpose(grad1[:,numx.newaxis,:,:], (0,1,3,2)),
axis=3)
assert numx.amax(abs(ref_grad - grad12)) < 1E-9
finally:
mdp.deactivate_extension("gradient")
def test_quadexpan_gradient1(self):
"""Test validity of gradient for QuadraticExpansionBiNode."""
node = mdp.nodes.QuadraticExpansionNode()
x = numx.array([[1, 3, 4]])
node.execute(x)
mdp.activate_extension("gradient")
try:
result = node._gradient(x)
grad = result[1]["grad"]
reference = numx.array(
[[[ 1, 0, 0], # x1
[ 0, 1, 0], # x2
[ 0, 0, 1], # x3
[ 2, 0, 0], # x1x1
[ 3, 1, 0], # x1x2
[ 4, 0, 1], # x1x3
[ 0, 6, 0], # x2x2
[ 0, 4, 3], # x2x3
[ 0, 0, 8]]]) # x3x3
assert numx.all(grad == reference)
finally:
mdp.deactivate_extension("gradient")
def test_quadexpan_gradient2(self):
"""Test gradient with multiple data points."""
node = mdp.nodes.QuadraticExpansionNode()
x = numx_rand.random((3,5))
node.execute(x)
mdp.activate_extension("gradient")
try:
result = node._gradient(x)
gradient = result[1]["grad"]
assert gradient.shape == (3,20,5)
finally:
mdp.deactivate_extension("gradient")
def test_sfa2_gradient(self):
sfa2_node1 = bimdp.nodes.SFA2BiNode(output_dim=5)
sfa2_node2 = bimdp.nodes.SFA2BiNode(output_dim=3)
flow = sfa2_node1 + sfa2_node2
x = numx_rand.random((300, 6))
flow.train(x)
x = numx_rand.random((2, 6))
mdp.activate_extension("gradient")
try:
flow.execute(x, {"method": "gradient"})
finally:
mdp.deactivate_extension("gradient")
def test_sfa2_gradient2(self):
def _alt_sfa2_grad(self, x):
"""Reference grad method based on quadratic forms."""
# note that the H and f arrays are cached in the node and remain even
# after the extension has been deactivated
if not hasattr(self, "__gradient_Hs"):
quad_forms = [self.get_quadratic_form(i)
for i in range(self.output_dim)]
self.__gradient_Hs = numx.vstack((quad_form.H[numx.newaxis]
for quad_form in quad_forms))
self.__gradient_fs = numx.vstack((quad_form.f[numx.newaxis]
for quad_form in quad_forms))
grad = (numx.dot(x, self.__gradient_Hs) +
numx.repeat(self.__gradient_fs[numx.newaxis,:,:],
len(x), axis=0))
return grad
sfa2_node = bimdp.nodes.SFA2BiNode(output_dim=3)
x = numx_rand.random((300, 6))
sfa2_node.train(x)
sfa2_node.stop_training()
x = numx_rand.random((2, 6))
mdp.activate_extension("gradient")
try:
result1 = sfa2_node.execute(x, {"method": "gradient"})
grad1 = result1[1]["grad"]
grad2 = _alt_sfa2_grad(sfa2_node, x)
assert numx.amax(abs(grad1 - grad2)) < 1E-9
finally:
mdp.deactivate_extension("gradient")
def test_layer_gradient(self):
"""Test gradient for a simple layer."""
node1 = mdp.nodes.SFA2Node(input_dim=4, output_dim=3)
node2 = mdp.nodes.SFANode(input_dim=6, output_dim=2)
layer = mdp.hinet.Layer([node1, node2])
x = numx_rand.random((100,10))
layer.train(x)
layer.stop_training()
mdp.activate_extension("gradient")
try:
x = numx_rand.random((7,10))
result = layer._gradient(x)
grad = result[1]["grad"]
# get reference result
grad1 = node1._gradient(x[:, :node1.input_dim])[1]["grad"]
grad2 = node2._gradient(x[:, node1.input_dim:])[1]["grad"]
ref_grad = numx.zeros(((7,5,10)))
ref_grad[:, :node1.output_dim, :node1.input_dim] = grad1
ref_grad[:, node1.output_dim:, node1.input_dim:] = grad2
assert numx.all(grad == ref_grad)
finally:
mdp.deactivate_extension("gradient")
def test_clonebilayer_gradient(self):
"""Test gradient for a simple layer."""
layer = bimdp.hinet.CloneBiLayer(
bimdp.nodes.SFA2BiNode(input_dim=5, output_dim=2),
n_nodes=3)
x = numx_rand.random((100,15))
layer.train(x)
layer.stop_training()
mdp.activate_extension("gradient")
try:
x = numx_rand.random((7,15))
result = layer._gradient(x)
grad = result[1]["grad"]
assert grad.shape == (7,6,15)
finally:
mdp.deactivate_extension("gradient")
def test_switchboard_gradient1(self):
"""Test that gradient is correct for a tiny switchboard."""
sboard = mdp.hinet.Switchboard(input_dim=4, connections=[2,0])
x = numx_rand.random((2,4))
mdp.activate_extension("gradient")
try:
result = sboard._gradient(x)
grad = result[1]["grad"]
ref_grad = numx.array([[[0,0,1,0], [1,0,0,0]],
[[0,0,1,0], [1,0,0,0]]], dtype=grad.dtype)
assert numx.all(grad == ref_grad)
finally:
mdp.deactivate_extension("gradient")
def test_switchboard_gradient2(self):
"""Test gradient for a larger switchboard."""
dim = 100
connections = [int(i) for i in numx.random.random((dim,)) * (dim-1)]
sboard = mdp.hinet.Switchboard(input_dim=dim, connections=connections)
x = numx.random.random((10, dim))
# assume a 5-dimensional gradient at this stage
grad = numx.random.random((10, dim, 5))
# original reference implementation
def _switchboard_grad(self, x):
grad = numx.zeros((self.output_dim, self.input_dim))
grad[range(self.output_dim), self.connections] = 1
return numx.tile(grad, (len(x), 1, 1))
with mdp.extension("gradient"):
result = sboard._gradient(x, grad)
ext_grad = result[1]["grad"]
tmp_grad = _switchboard_grad(sboard, x)
ref_grad = numx.asarray([numx.dot(tmp_grad[i], grad[i])
for i in range(len(tmp_grad))])
assert numx.all(ext_grad == ref_grad)
def test_network_gradient(self):
"""Test gradient for a small SFA network."""
sfa_node = bimdp.nodes.SFABiNode(input_dim=4*4, output_dim=5)
switchboard = bimdp.hinet.Rectangular2dBiSwitchboard(
in_channels_xy=8,
field_channels_xy=4,
field_spacing_xy=2)
flownode = bimdp.hinet.BiFlowNode(bimdp.BiFlow([sfa_node]))
sfa_layer = bimdp.hinet.CloneBiLayer(flownode,
switchboard.output_channels)
flow = bimdp.BiFlow([switchboard, sfa_layer])
train_gen = [numx_rand.random((10, switchboard.input_dim))
for _ in range(3)]
flow.train([None, train_gen])
# now can test the gradient
mdp.activate_extension("gradient")
try:
x = numx_rand.random((3, switchboard.input_dim))
result = flow(x, {"method": "gradient"})
grad = result[1]["grad"]
assert grad.shape == (3, sfa_layer.output_dim,
switchboard.input_dim)
finally:
mdp.deactivate_extension("gradient")
|