File: test_utils.py

package info (click to toggle)
mdtraj 1.11.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 79,324 kB
  • sloc: python: 25,216; ansic: 6,266; cpp: 5,685; xml: 1,252; makefile: 192
file content (215 lines) | stat: -rw-r--r-- 6,281 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
##############################################################################
# MDTraj: A Python Library for Loading, Saving, and Manipulating
#         Molecular Dynamics Trajectories.
# Copyright 2012-2017 Stanford University and the Authors
#
# Authors: Robert McGibbon
# Contributors: Matthew Harrigan
#
# MDTraj is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 2.1
# of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with MDTraj. If not, see <http://www.gnu.org/licenses/>.
##############################################################################


import warnings
from itertools import combinations

import numpy as np
import pytest

from mdtraj.testing import eq
from mdtraj.utils import (
    box_vectors_to_lengths_and_angles,
    ensure_type,
    import_,
    lengths_and_angles_to_box_vectors,
)
from mdtraj.utils.unit import in_units_of
from mdtraj.utils.validation import TypeCastPerformanceWarning

a = np.ones(10, dtype=np.float32)
b = np.ones((10, 10), dtype=np.float64, order="F")
random = np.random.RandomState(0)


def test_unitcell_0():
    result = lengths_and_angles_to_box_vectors(1, 1, 1, 90.0, 90.0, 90.0)
    expected = (
        np.array([1, 0, 0]),
        np.array([0.0, 1.0, 0.0]),
        np.array([0.0, 0.0, 1.0]),
    )
    for a, b in zip(result, expected):
        np.testing.assert_array_almost_equal(a, b)


def test_unitcell_1():
    # try round-tripping some random lengths and angles through
    # lengths_and_angles_to_box_vectors and box_vectors_to_lengths_and_angles,
    # and make sure we get back to where we started
    for _ in range(10):
        arg = np.hstack((random.rand(3), random.uniform(70, 110, size=3)))
        vectors = lengths_and_angles_to_box_vectors(*arg)
        out = box_vectors_to_lengths_and_angles(*vectors)
        np.testing.assert_array_almost_equal(arg, out)


def test_ensure_type_1():
    ensure_type(a, np.float32, 1, "", length=10)


def test_ensure_type_2():
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")

        val = ensure_type(a, np.float64, 1, "", length=10)

        assert val.dtype == np.float64
        assert a.dtype == np.float32  # a should not be changed
        assert len(w) == 1
        assert issubclass(w[-1].category, TypeCastPerformanceWarning)


def test_ensure_type_25():
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")

        val = ensure_type(a, np.float64, 1, "", length=10, warn_on_cast=False)

        assert val.dtype == np.float64
        assert a.dtype == np.float32  # a should not be changed
        assert len(w) == 0  # no warning since we set warn_on_cast to False


def test_ensure_type_3():
    with pytest.raises(ValueError):
        ensure_type(a, np.float32, 1, "", length=11)


def test_ensure_type_4():
    ensure_type(None, np.float64, 1, "", length=11, can_be_none=True)


def test_ensure_type_5():
    with pytest.raises(ValueError):
        ensure_type(a, np.float32, 1, "", length=11, can_be_none=True)


def test_ensure_type_6():
    val = ensure_type(b, np.float64, 2, "", shape=(10, 10))
    assert val.flags.c_contiguous is True


def test_ensure_type_7():
    c = ensure_type(a, np.float32, ndim=2, name="", add_newaxis_on_deficient_ndim=True)
    assert c.shape == (1, len(a))


def test_ensure_type_8():
    c = ensure_type(np.zeros((5, 10)), np.float32, ndim=2, name="", shape=(None, 10))
    assert c.shape == (5, 10)


def test_ensure_type_9():
    with pytest.raises(ValueError):
        ensure_type(
            np.zeros((5, 11)),
            np.float32,
            ndim=2,
            name="",
            shape=(None, 10),
        )


def test_ensure_type_10():
    with pytest.raises(ValueError):
        ensure_type([0, 1], np.float32, ndim=2, name="")


def test_ensure_type_11():
    c = ensure_type(0, np.float32, ndim=1, name="", add_newaxis_on_deficient_ndim=True)
    assert c.shape == (1,)


def test_ensure_type_12():
    with pytest.raises(TypeError):
        ensure_type(np.zeros((2, 2)), np.float32, ndim=3)


def test_ensure_type_13():
    with pytest.raises(ValueError):
        ensure_type(
            np.zeros((2, 2)),
            np.float32,
            ndim=2,
            name="",
            shape=(None, None, None),
        )


def test_ensure_type_14():
    # test that the generators work
    value = ensure_type(combinations(range(10), 2), int, ndim=2, name="")
    assert isinstance(value, np.ndarray)
    ref = np.array(list(combinations(range(10), 2)))
    eq(value, ref)


def test_ensure_type_15():
    # test that lists
    x = [1, 2, 3]
    value = ensure_type(x, int, ndim=1, name="")
    ref = np.array(x)
    eq(value, ref)


def test_delay_import_fail_1():
    with pytest.raises(ImportError):
        import_("sdfsdfsfsfdsdf")


def test_delay_import():
    import_("scipy.sparse")


def test_unit_0():
    a = np.array([1.0])
    b = in_units_of(a, "nanometers", "angstroms", inplace=False)
    c = in_units_of(a, "angstroms", "nanometers", inplace=False)
    eq(b, np.array([10.0]))
    eq(c, np.array([0.1]))
    assert a.ctypes.data != b.ctypes.data
    assert a.ctypes.data != c.ctypes.data


def test_unit_1():
    a = np.array([1.0])
    b = in_units_of(a, "nanometers", "angstroms", inplace=True)
    eq(a, np.array([10.0]))
    eq(b, np.array([10.0]))
    # a and b point to the same memory
    assert a.ctypes.data == b.ctypes.data


def test_unit_2():
    a = np.array([1.0])
    a.flags["WRITEABLE"] = False
    b = in_units_of(a, "nanometers", "angstroms", inplace=True)

    eq(b, np.array([10.0]))
    # a and b do not point to the same memory, since a isn't writeable
    assert a.ctypes.data != b.ctypes.data


def test_unit_3():
    eq(1000000.0, in_units_of(1, "meter**2/second", "nanometers**2/picosecond"))