File: basis.py

package info (click to toggle)
meep-mpi-default 1.17.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 51,672 kB
  • sloc: cpp: 29,881; python: 17,210; lisp: 1,225; makefile: 477; sh: 249; ansic: 133; javascript: 5
file content (222 lines) | stat: -rw-r--r-- 8,394 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import meep as mp
import numpy as np
from scipy import sparse
#from autograd import grad, jacobian, vector_jacobian_product
import autograd.numpy as npa
from autograd import grad, jacobian
#invoke python's 'abstract base class' formalism in a version-agnostic way
from abc import ABCMeta, abstractmethod
ABC = ABCMeta('ABC', (object,), {'__slots__': ()}) # compatible with Python 2 and 3

#----------------------------------------------------------------------
# Basis is the abstract base class from which classes describing specific
# basis sets should inherit.
#----------------------------------------------------------------------
class Basis(ABC):
    """
    """

    def __init__(self, rho_vector=None, volume=None, size=None, center=mp.Vector3()):
        self.volume = volume if volume else mp.Volume(center=center,size=size)
        self.rho_vector = rho_vector
    
    def func(self):
        def _f(p): 
            return self(p)
        return _f

    @abstractmethod
    def get_basis_vjp(self):
        raise NotImplementedError("derived class must implement get_basis_vjp method")
    
    @abstractmethod
    def __call__(self, p=[0.0,0.0]):
        raise NotImplementedError("derived class must implement __call__() method")

    def set_rho_vector(self, rho_vector):
        self.rho_vector = rho_vector

# -------------------------------- #
# Bilinear Interpolation Basis class
# -------------------------------- #

class BilinearInterpolationBasis(Basis):
    ''' 
    Simple bilinear interpolation basis set.
    '''

    def __init__(self,resolution,symmetry=None,**kwargs):
        ''' 
        
        '''
        self.dim = 2

        super(BilinearInterpolationBasis, self).__init__(**kwargs)

        # Generate interpolation grid
        if symmetry is None or len(symmetry) == 0:
            self.symmetry = []
        else:
            self.symmetry = symmetry
        
        if mp.X in set(self.symmetry):
            self.Nx = int(resolution * self.volume.size.x / 2)
            self.rho_x = np.linspace(self.volume.center.x,self.volume.center.x + self.volume.size.x/2,self.Nx)
            self.mirror_X = True
        else:
            self.Nx = int(resolution * self.volume.size.x)
            self.rho_x = np.linspace(self.volume.center.x - self.volume.size.x/2,self.volume.center.x + self.volume.size.x/2,self.Nx)
            self.mirror_X = False
        
        if mp.Y in set(self.symmetry):
            self.Ny = int(resolution * self.volume.size.y / 2)
            self.rho_y = np.linspace(self.volume.center.y,self.volume.center.y + self.volume.size.y/2,self.Ny)
            self.mirror_Y = True
        else:
            self.Ny = int(resolution * self.volume.size.y)
            self.rho_y = np.linspace(self.volume.center.y - self.volume.size.y/2,self.volume.center.y + self.volume.size.y/2,self.Ny)
            self.mirror_Y = False
        
        self.num_design_params = self.Nx*self.Ny

        if self.rho_vector is None:
            self.rho_vector = np.ones((self.num_design_params,))

    def __call__(self, p):
        x = 2*self.volume.center.x - p.x if self.mirror_X and p.x < self.volume.center.x else p.x
        y = 2*self.volume.center.y - p.y if self.mirror_Y and p.y < self.volume.center.y else p.y

        weights, interp_idx = self.get_bilinear_row(x,y,self.rho_x,self.rho_y) # ignore z coordinate
        return np.dot( self.rho_vector[interp_idx], weights )                  

    def get_basis_vjp(self,dJ_deps,design_grid):
        ''' get vector jacobian product of interpolator'''
        
        dg_Nx, dg_Ny, Nz, Nf = dJ_deps.shape # get important design grid dimensions
        x_grid = design_grid.x
        y_grid = design_grid.y
        z_grid = design_grid.z

        # take care of symmetries
        if self.mirror_X:
            dJ_deps = dJ_deps[int(dg_Nx/2):,:,:,:] * 2
            x_grid = x_grid[int(dg_Nx/2):]
        if self.mirror_Y:
            dJ_deps = dJ_deps[:,int(dg_Ny/2):,:,:] * 2
            y_grid = y_grid[int(dg_Ny/2):]

        dg_Nx, dg_Ny, Nz, Nf = dJ_deps.shape # recalculate
        Nx, Ny = self.rho_x.size, self.rho_y.size # get important interpolator dimensions

        # same interpolation matrix for all frequencies and all coordinates in Z direction
        A = self.gen_interpolation_matrix(self.rho_x,self.rho_y,x_grid,y_grid,z_grid)
        # TODO ditch the for loops
        dJ_dp = np.zeros((Nx * Ny,Nf))
        for fi in range(Nf):
            for zi in range(Nz):
                dJ_dp[:,fi] += np.matmul(dJ_deps[:,:,zi,fi].reshape(dg_Nx * dg_Ny,order='C'), A)
        return dJ_dp
    
    def get_bilinear_coefficients(self,x,x1,x2,y,y1,y2):
        '''
        Calculates the bilinear interpolation coefficients for a single point at (x,y).
        Assumes that the user already knows the four closest points and provides the corresponding
        (x1,x2) and(y1,y2) coordinates.
        '''
        b11 = ((x - x2)*(y - y2))/((x1 - x2)*(y1 - y2))
        b12 = -((x - x2)*(y - y1))/((x1 - x2)*(y1 - y2))
        b21 = -((x - x1)*(y - y2))/((x1 - x2)*(y1 - y2))
        b22 = ((x - x1)*(y - y1))/((x1 - x2)*(y1 - y2))
        return [b11,b12,b21,b22]

    def get_bilinear_row(self,rx,ry,rho_x,rho_y):
        '''
        Calculates a vector of bilinear interpolation weights that can be used
        in an inner product with the neighboring function values, or placed
        inside of an interpolation matrix.
        '''

        Nx = rho_x.size
        Ny = rho_y.size

        # binary search in x direction to get x1 and x2
        xi2 = np.searchsorted(rho_x,rx,side='left')
        if xi2 <= 0: # extrapolation (be careful!)
            xi1 = 0
            xi2 = 1
        elif xi2 >= Nx-1: # extrapolation (be careful!)
            xi1 = Nx-2
            xi2 = Nx-1
        else:
            xi1 = xi2 - 1
        
        x1 = rho_x[xi1]
        x2 = rho_x[xi2]

        # binary search in y direction to get y1 and y2
        yi2 = np.searchsorted(rho_y,ry,side='left')
        if yi2 <= 0: # extrapolation (be careful!)
            yi1 = 0
            yi2 = 1
        elif yi2 >= Ny-1: # extrapolation (be careful!)
            yi1 = Ny-2
            yi2 = Ny-1
        else:
            yi1 = yi2 - 1
        
        y1 = rho_y[yi1]
        y2 = rho_y[yi2]
        
        # get weights
        weights = self.get_bilinear_coefficients(rx,x1,x2,ry,y1,y2)
        
        # get location of nearest neigbor interpolation points
        interp_idx = np.array([xi1*Ny+yi1,xi1*Ny+yi2,(xi2)*Ny+yi1,(xi2)*Ny+yi2],dtype=np.int64)

        return weights, interp_idx


    def gen_interpolation_matrix(self,rho_x,rho_y,rho_x_interp,rho_y_interp,rho_z_interp):
        '''
        Generates a bilinear interpolation matrix.
        
        Arguments:
        rho_x ................ [N,] numpy array - original x array mapping to povided data
        rho_y ................ [N,] numpy array - original y array mapping to povided data
        rho_x_interp ......... [N,] numpy array - new x array mapping to desired interpolated data
        rho_y_interp ......... [N,] numpy array - new y array mapping to desired interpolated data

        Returns:
        A .................... [N,M] sparse matrix - interpolation matrix
        '''

        Nx = rho_x.size
        Ny = rho_y.size
        Nx_interp = np.array(rho_x_interp).size
        Ny_interp = np.array(rho_y_interp).size
        Nz_interp = np.array(rho_y_interp).size

        input_dimension = Nx * Ny
        output_dimension = Nx_interp * Ny_interp

        interp_weights = np.zeros(4*output_dimension) 
        row_ind = np.zeros(4*output_dimension,dtype=np.int64) 
        col_ind = np.zeros(4*output_dimension,dtype=np.int64)

        ri = 0
        for rx in rho_x_interp:
            for ry in rho_y_interp:
                # get weights
                weights, interp_idx = self.get_bilinear_row(rx,ry,rho_x,rho_y)

                # populate sparse matrix vectors
                interp_weights[4*ri:4*(ri+1)] = weights
                row_ind[4*ri:4*(ri+1)] = np.array([ri,ri,ri,ri],dtype=np.int64)
                col_ind[4*ri:4*(ri+1)] = interp_idx

                ri += 1
        
        # From matrix vectors, populate the sparse matrix
        A = sparse.coo_matrix((interp_weights, (row_ind, col_ind)),shape=(output_dimension, input_dimension))
        
        return A