File: objective.py

package info (click to toggle)
meep-mpi-default 1.17.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 51,672 kB
  • sloc: cpp: 29,881; python: 17,210; lisp: 1,225; makefile: 477; sh: 249; ansic: 133; javascript: 5
file content (260 lines) | stat: -rw-r--r-- 10,822 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""Handling of objective functions and objective quantities."""

from abc import ABC, abstractmethod
import numpy as np
import meep as mp
from .filter_source import FilteredSource
from .optimization_problem import Grid
from meep.simulation import py_v3_to_vec

class ObjectiveQuantitiy(ABC):
    @abstractmethod
    def __init__(self):
        return
    @abstractmethod
    def register_monitors(self):
        return
    @abstractmethod
    def place_adjoint_source(self):
        return
    @abstractmethod
    def __call__(self):
        return
    @abstractmethod
    def get_evaluation(self):
        return

class EigenmodeCoefficient(ObjectiveQuantitiy):
    def __init__(self,sim,volume,mode,forward=True,kpoint_func=None,**kwargs):
        '''
        '''
        self.sim = sim
        self.volume=volume
        self.mode=mode
        self.forward = 0 if forward else 1
        self.normal_direction = None
        self.kpoint_func = kpoint_func
        self.eval = None
        self.EigenMode_kwargs = kwargs
        return

    def register_monitors(self,frequencies):
        self.frequencies = np.asarray(frequencies)
        self.monitor = self.sim.add_mode_monitor(frequencies,mp.ModeRegion(center=self.volume.center,size=self.volume.size),yee_grid=True)
        self.normal_direction = self.monitor.normal_direction
        return self.monitor

    def place_adjoint_source(self,dJ):
        '''Places an equivalent eigenmode monitor facing the opposite direction. Calculates the
        correct scaling/time profile.
        dJ ........ the user needs to pass the dJ/dMonitor evaluation
        '''
        dJ = np.atleast_1d(dJ)
        dt = self.sim.fields.dt # the timestep size from sim.fields.dt of the forward sim
        # determine starting kpoint for reverse mode eigenmode source
        direction_scalar = 1 if self.forward else -1
        if self.kpoint_func is None:
            if self.normal_direction == 0:
                k0 = direction_scalar * mp.Vector3(x=1)
            elif self.normal_direction == 1:
                k0 = direction_scalar * mp.Vector3(y=1)
            elif self.normal_direction == 2:
                k0 == direction_scalar * mp.Vector3(z=1)
        else:
            k0 = direction_scalar * self.kpoint_func(self.time_src.frequency,1)
        if dJ.ndim == 2:
            dJ = np.sum(dJ,axis=1)
        da_dE = 0.5 * self.cscale # scalar popping out of derivative

        scale = adj_src_scale(self, dt)

        if self.frequencies.size == 1:
            # Single frequency simulations. We need to drive it with a time profile.
            amp = da_dE * dJ * scale # final scale factor
            src = self.time_src
        else:
            # multi frequency simulations
            scale = da_dE * dJ * scale
            src = FilteredSource(self.time_src.frequency,self.frequencies,scale,dt) # generate source from broadband response
            amp = 1

        # generate source object
        self.source = [mp.EigenModeSource(src,
                    eig_band=self.mode,
                    direction=mp.NO_DIRECTION,
                    eig_kpoint=k0,
                    amplitude=amp,
                    eig_match_freq=True,
                    size=self.volume.size,
                    center=self.volume.center,
                    **self.EigenMode_kwargs)]

        return self.source

    def __call__(self):
        # We just need a workable time profile, so just grab the first available time profile and use that.
        self.time_src = self.sim.sources[0].src

        # Eigenmode data
        direction = mp.NO_DIRECTION if self.kpoint_func else mp.AUTOMATIC
        ob = self.sim.get_eigenmode_coefficients(self.monitor,[self.mode],direction=direction,kpoint_func=self.kpoint_func,**self.EigenMode_kwargs)
        self.eval = np.squeeze(ob.alpha[:,:,self.forward]) # record eigenmode coefficients for scaling
        self.cscale = ob.cscale # pull scaling factor

        return self.eval
    def get_evaluation(self):
        '''Returns the requested eigenmode coefficient.
        '''
        try:
            return self.eval
        except AttributeError:
            raise RuntimeError("You must first run a forward simulation before resquesting an eigenmode coefficient.")


class FourierFields(ObjectiveQuantitiy):
    def __init__(self,sim,volume, component):
        self.sim = sim
        self.volume=volume
        self.eval = None
        self.component = component
        return

    def register_monitors(self,frequencies):
        self.frequencies = np.asarray(frequencies)
        self.num_freq = len(self.frequencies)
        self.monitor = self.sim.add_dft_fields([self.component], self.frequencies, where=self.volume, yee_grid=False)
        return self.monitor

    def place_adjoint_source(self,dJ):
        dt = self.sim.fields.dt # the timestep size from sim.fields.dt of the forward sim
        self.sources = []
        scale = adj_src_scale(self, dt)

        x_dim, y_dim, z_dim = len(self.dg.x), len(self.dg.y), len(self.dg.z)

        if self.num_freq == 1:
            amp = -dJ[0].copy().reshape(x_dim, y_dim, z_dim) * scale
            src = self.time_src
            if self.component in [mp.Hx, mp.Hy, mp.Hz]:
                amp = -amp
            for zi in range(z_dim):
                for yi in range(y_dim):
                    for xi in range(x_dim):
                        if amp[xi, yi, zi] != 0:
                            self.sources += [mp.Source(src, component=self.component, amplitude=amp[xi, yi, zi],
                            center=mp.Vector3(self.dg.x[xi], self.dg.y[yi], self.dg.z[zi]))]
        else:
            dJ_4d = np.array([dJ[f].copy().reshape(x_dim, y_dim, z_dim) for f in range(self.num_freq)])
            if self.component in [mp.Hx, mp.Hy, mp.Hz]:
                dJ_4d = -dJ_4d
            for zi in range(z_dim):
                for yi in range(y_dim):
                    for xi in range(x_dim):
                        final_scale = -dJ_4d[:,xi,yi,zi] * scale
                        src = FilteredSource(self.time_src.frequency,self.frequencies,final_scale,dt)
                        self.sources += [mp.Source(src, component=self.component, amplitude=1,
                                center=mp.Vector3(self.dg.x[xi], self.dg.y[yi], self.dg.z[zi]))]

        return self.sources

    def __call__(self):
        self.time_src = self.sim.sources[0].src
        self.dg = Grid(*self.sim.get_array_metadata(dft_cell=self.monitor))
        self.eval = np.array([self.sim.get_dft_array(self.monitor, self.component, i) for i in range(self.num_freq)])
        return self.eval

    def get_evaluation(self):
        try:
            return self.eval
        except AttributeError:
            raise RuntimeError("You must first run a forward simulation.")


class Near2FarFields(ObjectiveQuantitiy):
    def __init__(self,sim,Near2FarRegions, far_pts):
        self.sim = sim
        self.Near2FarRegions=Near2FarRegions
        self.eval = None
        self.far_pts = far_pts #list of far pts
        self.nfar_pts = len(far_pts)
        return

    def register_monitors(self,frequencies):
        self.frequencies = np.asarray(frequencies)
        self.num_freq = len(self.frequencies)
        self.monitor = self.sim.add_near2far(self.frequencies, *self.Near2FarRegions, yee_grid=True)
        return self.monitor

    def place_adjoint_source(self,dJ):
        dt = self.sim.fields.dt # the timestep size from sim.fields.dt of the forward sim
        self.sources = []
        if dJ.ndim == 4:
            dJ = np.sum(dJ,axis=0)
        dJ = dJ.flatten()
        farpt_list = np.array([list(pi) for pi in self.far_pts]).flatten()
        far_pt0 = self.far_pts[0]
        far_pt_vec = py_v3_to_vec(self.sim.dimensions, far_pt0, self.sim.is_cylindrical)

        self.all_nearsrcdata = self.monitor.swigobj.near_sourcedata(far_pt_vec, farpt_list, self.nfar_pts, dJ)
        for near_data in self.all_nearsrcdata:
            cur_comp = near_data.near_fd_comp
            amp_arr = np.array(near_data.amp_arr).reshape(-1, self.num_freq)
            scale = amp_arr * adj_src_scale(self, dt, include_resolution=False)

            if self.num_freq == 1:
                self.sources += [mp.IndexedSource(self.time_src, near_data, scale[:,0])]
            else:
                src = FilteredSource(self.time_src.frequency,self.frequencies,scale,dt)
                (num_basis, num_pts) = src.nodes.shape
                for basis_i in range(num_basis):
                    self.sources += [mp.IndexedSource(src.time_src_bf[basis_i], near_data, src.nodes[basis_i])]

        return self.sources

    def __call__(self):
        self.time_src = self.sim.sources[0].src
        self.eval = np.array([self.sim.get_farfield(self.monitor, far_pt) for far_pt in self.far_pts]).reshape((self.nfar_pts, self.num_freq, 6))
        return self.eval

    def get_evaluation(self):
        try:
            return self.eval
        except AttributeError:
            raise RuntimeError("You must first run a forward simulation.")


def adj_src_scale(obj_quantity, dt, include_resolution=True):
    # -------------------------------------- #
    # Get scaling factor
    # -------------------------------------- #
    # leverage linearity and combine source for multiple frequencies
    T = obj_quantity.sim.meep_time()

    if not include_resolution:
        dV = 1
    elif obj_quantity.sim.cell_size.y == 0:
        dV = 1/obj_quantity.sim.resolution
    elif obj_quantity.sim.cell_size.z == 0:
        dV = 1/obj_quantity.sim.resolution * 1/obj_quantity.sim.resolution
    else:
        dV = 1/obj_quantity.sim.resolution * 1/obj_quantity.sim.resolution * 1/obj_quantity.sim.resolution

    iomega = (1.0 - np.exp(-1j * (2 * np.pi * obj_quantity.frequencies) * dt)) * (1.0 / dt) # scaled frequency factor with discrete time derivative fix

    src = obj_quantity.time_src

    # an ugly way to calcuate the scaled dtft of the forward source
    y = np.array([src.swigobj.current(t,dt) for t in np.arange(0,T,dt)]) # time domain signal
    fwd_dtft = np.matmul(np.exp(1j*2*np.pi*obj_quantity.frequencies[:,np.newaxis]*np.arange(y.size)*dt), y)*dt/np.sqrt(2*np.pi) # dtft

    # we need to compensate for the phase added by the time envelope at our freq of interest
    src_center_dtft = np.matmul(np.exp(1j*2*np.pi*np.array([src.frequency])[:,np.newaxis]*np.arange(y.size)*dt), y)*dt/np.sqrt(2*np.pi)
    adj_src_phase = np.exp(1j*np.angle(src_center_dtft))

    if obj_quantity.frequencies.size == 1:
        # Single frequency simulations. We need to drive it with a time profile.
        scale = dV * iomega / fwd_dtft / adj_src_phase # final scale factor
    else:
        # multi frequency simulations
        scale = dV * iomega / adj_src_phase
    return scale