1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
"""Handling of objective functions and objective quantities."""
from abc import ABC, abstractmethod
import numpy as np
import meep as mp
from .filter_source import FilteredSource
from .optimization_problem import Grid
from meep.simulation import py_v3_to_vec
class ObjectiveQuantitiy(ABC):
@abstractmethod
def __init__(self):
return
@abstractmethod
def register_monitors(self):
return
@abstractmethod
def place_adjoint_source(self):
return
@abstractmethod
def __call__(self):
return
@abstractmethod
def get_evaluation(self):
return
class EigenmodeCoefficient(ObjectiveQuantitiy):
def __init__(self,sim,volume,mode,forward=True,kpoint_func=None,**kwargs):
'''
'''
self.sim = sim
self.volume=volume
self.mode=mode
self.forward = 0 if forward else 1
self.normal_direction = None
self.kpoint_func = kpoint_func
self.eval = None
self.EigenMode_kwargs = kwargs
return
def register_monitors(self,frequencies):
self.frequencies = np.asarray(frequencies)
self.monitor = self.sim.add_mode_monitor(frequencies,mp.ModeRegion(center=self.volume.center,size=self.volume.size),yee_grid=True)
self.normal_direction = self.monitor.normal_direction
return self.monitor
def place_adjoint_source(self,dJ):
'''Places an equivalent eigenmode monitor facing the opposite direction. Calculates the
correct scaling/time profile.
dJ ........ the user needs to pass the dJ/dMonitor evaluation
'''
dJ = np.atleast_1d(dJ)
dt = self.sim.fields.dt # the timestep size from sim.fields.dt of the forward sim
# determine starting kpoint for reverse mode eigenmode source
direction_scalar = 1 if self.forward else -1
if self.kpoint_func is None:
if self.normal_direction == 0:
k0 = direction_scalar * mp.Vector3(x=1)
elif self.normal_direction == 1:
k0 = direction_scalar * mp.Vector3(y=1)
elif self.normal_direction == 2:
k0 == direction_scalar * mp.Vector3(z=1)
else:
k0 = direction_scalar * self.kpoint_func(self.time_src.frequency,1)
if dJ.ndim == 2:
dJ = np.sum(dJ,axis=1)
da_dE = 0.5 * self.cscale # scalar popping out of derivative
scale = adj_src_scale(self, dt)
if self.frequencies.size == 1:
# Single frequency simulations. We need to drive it with a time profile.
amp = da_dE * dJ * scale # final scale factor
src = self.time_src
else:
# multi frequency simulations
scale = da_dE * dJ * scale
src = FilteredSource(self.time_src.frequency,self.frequencies,scale,dt) # generate source from broadband response
amp = 1
# generate source object
self.source = [mp.EigenModeSource(src,
eig_band=self.mode,
direction=mp.NO_DIRECTION,
eig_kpoint=k0,
amplitude=amp,
eig_match_freq=True,
size=self.volume.size,
center=self.volume.center,
**self.EigenMode_kwargs)]
return self.source
def __call__(self):
# We just need a workable time profile, so just grab the first available time profile and use that.
self.time_src = self.sim.sources[0].src
# Eigenmode data
direction = mp.NO_DIRECTION if self.kpoint_func else mp.AUTOMATIC
ob = self.sim.get_eigenmode_coefficients(self.monitor,[self.mode],direction=direction,kpoint_func=self.kpoint_func,**self.EigenMode_kwargs)
self.eval = np.squeeze(ob.alpha[:,:,self.forward]) # record eigenmode coefficients for scaling
self.cscale = ob.cscale # pull scaling factor
return self.eval
def get_evaluation(self):
'''Returns the requested eigenmode coefficient.
'''
try:
return self.eval
except AttributeError:
raise RuntimeError("You must first run a forward simulation before resquesting an eigenmode coefficient.")
class FourierFields(ObjectiveQuantitiy):
def __init__(self,sim,volume, component):
self.sim = sim
self.volume=volume
self.eval = None
self.component = component
return
def register_monitors(self,frequencies):
self.frequencies = np.asarray(frequencies)
self.num_freq = len(self.frequencies)
self.monitor = self.sim.add_dft_fields([self.component], self.frequencies, where=self.volume, yee_grid=False)
return self.monitor
def place_adjoint_source(self,dJ):
dt = self.sim.fields.dt # the timestep size from sim.fields.dt of the forward sim
self.sources = []
scale = adj_src_scale(self, dt)
x_dim, y_dim, z_dim = len(self.dg.x), len(self.dg.y), len(self.dg.z)
if self.num_freq == 1:
amp = -dJ[0].copy().reshape(x_dim, y_dim, z_dim) * scale
src = self.time_src
if self.component in [mp.Hx, mp.Hy, mp.Hz]:
amp = -amp
for zi in range(z_dim):
for yi in range(y_dim):
for xi in range(x_dim):
if amp[xi, yi, zi] != 0:
self.sources += [mp.Source(src, component=self.component, amplitude=amp[xi, yi, zi],
center=mp.Vector3(self.dg.x[xi], self.dg.y[yi], self.dg.z[zi]))]
else:
dJ_4d = np.array([dJ[f].copy().reshape(x_dim, y_dim, z_dim) for f in range(self.num_freq)])
if self.component in [mp.Hx, mp.Hy, mp.Hz]:
dJ_4d = -dJ_4d
for zi in range(z_dim):
for yi in range(y_dim):
for xi in range(x_dim):
final_scale = -dJ_4d[:,xi,yi,zi] * scale
src = FilteredSource(self.time_src.frequency,self.frequencies,final_scale,dt)
self.sources += [mp.Source(src, component=self.component, amplitude=1,
center=mp.Vector3(self.dg.x[xi], self.dg.y[yi], self.dg.z[zi]))]
return self.sources
def __call__(self):
self.time_src = self.sim.sources[0].src
self.dg = Grid(*self.sim.get_array_metadata(dft_cell=self.monitor))
self.eval = np.array([self.sim.get_dft_array(self.monitor, self.component, i) for i in range(self.num_freq)])
return self.eval
def get_evaluation(self):
try:
return self.eval
except AttributeError:
raise RuntimeError("You must first run a forward simulation.")
class Near2FarFields(ObjectiveQuantitiy):
def __init__(self,sim,Near2FarRegions, far_pts):
self.sim = sim
self.Near2FarRegions=Near2FarRegions
self.eval = None
self.far_pts = far_pts #list of far pts
self.nfar_pts = len(far_pts)
return
def register_monitors(self,frequencies):
self.frequencies = np.asarray(frequencies)
self.num_freq = len(self.frequencies)
self.monitor = self.sim.add_near2far(self.frequencies, *self.Near2FarRegions, yee_grid=True)
return self.monitor
def place_adjoint_source(self,dJ):
dt = self.sim.fields.dt # the timestep size from sim.fields.dt of the forward sim
self.sources = []
if dJ.ndim == 4:
dJ = np.sum(dJ,axis=0)
dJ = dJ.flatten()
farpt_list = np.array([list(pi) for pi in self.far_pts]).flatten()
far_pt0 = self.far_pts[0]
far_pt_vec = py_v3_to_vec(self.sim.dimensions, far_pt0, self.sim.is_cylindrical)
self.all_nearsrcdata = self.monitor.swigobj.near_sourcedata(far_pt_vec, farpt_list, self.nfar_pts, dJ)
for near_data in self.all_nearsrcdata:
cur_comp = near_data.near_fd_comp
amp_arr = np.array(near_data.amp_arr).reshape(-1, self.num_freq)
scale = amp_arr * adj_src_scale(self, dt, include_resolution=False)
if self.num_freq == 1:
self.sources += [mp.IndexedSource(self.time_src, near_data, scale[:,0])]
else:
src = FilteredSource(self.time_src.frequency,self.frequencies,scale,dt)
(num_basis, num_pts) = src.nodes.shape
for basis_i in range(num_basis):
self.sources += [mp.IndexedSource(src.time_src_bf[basis_i], near_data, src.nodes[basis_i])]
return self.sources
def __call__(self):
self.time_src = self.sim.sources[0].src
self.eval = np.array([self.sim.get_farfield(self.monitor, far_pt) for far_pt in self.far_pts]).reshape((self.nfar_pts, self.num_freq, 6))
return self.eval
def get_evaluation(self):
try:
return self.eval
except AttributeError:
raise RuntimeError("You must first run a forward simulation.")
def adj_src_scale(obj_quantity, dt, include_resolution=True):
# -------------------------------------- #
# Get scaling factor
# -------------------------------------- #
# leverage linearity and combine source for multiple frequencies
T = obj_quantity.sim.meep_time()
if not include_resolution:
dV = 1
elif obj_quantity.sim.cell_size.y == 0:
dV = 1/obj_quantity.sim.resolution
elif obj_quantity.sim.cell_size.z == 0:
dV = 1/obj_quantity.sim.resolution * 1/obj_quantity.sim.resolution
else:
dV = 1/obj_quantity.sim.resolution * 1/obj_quantity.sim.resolution * 1/obj_quantity.sim.resolution
iomega = (1.0 - np.exp(-1j * (2 * np.pi * obj_quantity.frequencies) * dt)) * (1.0 / dt) # scaled frequency factor with discrete time derivative fix
src = obj_quantity.time_src
# an ugly way to calcuate the scaled dtft of the forward source
y = np.array([src.swigobj.current(t,dt) for t in np.arange(0,T,dt)]) # time domain signal
fwd_dtft = np.matmul(np.exp(1j*2*np.pi*obj_quantity.frequencies[:,np.newaxis]*np.arange(y.size)*dt), y)*dt/np.sqrt(2*np.pi) # dtft
# we need to compensate for the phase added by the time envelope at our freq of interest
src_center_dtft = np.matmul(np.exp(1j*2*np.pi*np.array([src.frequency])[:,np.newaxis]*np.arange(y.size)*dt), y)*dt/np.sqrt(2*np.pi)
adj_src_phase = np.exp(1j*np.angle(src_center_dtft))
if obj_quantity.frequencies.size == 1:
# Single frequency simulations. We need to drive it with a time profile.
scale = dV * iomega / fwd_dtft / adj_src_phase # final scale factor
else:
# multi frequency simulations
scale = dV * iomega / adj_src_phase
return scale
|